College of Chemistry, Fuzhou University, Fuzhou, China.
College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.
Nat Chem Biol. 2019 Dec;15(12):1241-1248. doi: 10.1038/s41589-019-0377-4. Epub 2019 Oct 14.
The Holliday junction (HJ) is a key intermediate during homologous recombination and DNA double-strand break repair. Timely HJ resolution by resolvases is critical for maintaining genome stability. The mechanisms underlying sequence-specific substrate recognition and cleavage by resolvases remain elusive. The monokaryotic chloroplast 1 protein (MOC1) specifically cleaves four-way DNA junctions in a sequence-specific manner. Here, we report the crystal structures of MOC1 from Zea mays, alone or bound to HJ DNA. MOC1 uses a unique β-hairpin to embrace the DNA junction. A base-recognition motif specifically interacts with the junction center, inducing base flipping and pseudobase-pair formation at the strand-exchanging points. Structures of MOC1 bound to HJ and different metal ions support a two-metal ion catalysis mechanism. Further molecular dynamics simulations and biochemical analyses reveal a communication between specific substrate recognition and metal ion-dependent catalysis. Our study thus provides a mechanism for how a resolvase turns substrate specificity into catalytic efficiency.
霍利迪连接(HJ)是同源重组和 DNA 双链断裂修复过程中的关键中间体。解旋酶及时进行 HJ 解析对于维持基因组稳定性至关重要。然而,解旋酶识别和切割特定序列底物的机制仍不清楚。单核叶绿体 1 蛋白(MOC1)特异性地以序列特异性方式切割四链 DNA 连接点。在这里,我们报告了来自玉米的 MOC1 的晶体结构,无论是单独存在还是与 HJ DNA 结合。MOC1 使用独特的β发夹结构来环抱 DNA 连接点。一个碱基识别模体特异性地与连接点中心相互作用,在链交换点诱导碱基翻转和拟碱基对形成。MOC1 与 HJ 和不同金属离子结合的结构支持双金属离子催化机制。进一步的分子动力学模拟和生化分析揭示了特定底物识别和金属离子依赖性催化之间的通讯。因此,我们的研究为解旋酶如何将底物特异性转化为催化效率提供了一种机制。