Suppr超能文献

验证和比较两种用于量化疑似血管源性脑白质高信号的自动方法。

Validation and comparison of two automated methods for quantifying brain white matter hyperintensities of presumed vascular origin.

机构信息

Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK.

出版信息

J Int Med Res. 2020 Feb;48(2):300060519880053. doi: 10.1177/0300060519880053. Epub 2019 Oct 15.

Abstract

OBJECTIVES

White matter hyperintensities (WMH) are a common imaging finding indicative of cerebral small vessel disease. Lesion segmentation algorithms have been developed to overcome issues arising from visual rating scales. In this study, we evaluated two automated methods and compared them to visual and manual segmentation to determine the most robust algorithm provided by the open-source Lesion Segmentation Toolbox (LST).

METHODS

We compared WMH data from visual ratings (Scheltens' scale) with those derived from algorithms provided within LST. We then compared spatial and volumetric WMH data derived from manually-delineated lesion maps with WMH data and lesion maps provided by the LST algorithms.

RESULTS

We identified optimal initial thresholds for algorithms provided by LST compared with visual ratings (Lesion Growth Algorithm (LGA): initial κ and lesion probability thresholds, 0.5; Lesion Probability Algorithm (LPA) lesion probability threshold, 0.65). LGA was found to perform better then LPA compared with manual segmentation.

CONCLUSION

LGA appeared to be the most suitable algorithm for quantifying WMH in relation to cerebral small vessel disease, compared with Scheltens' score and manual segmentation. LGA offers a user-friendly, effective WMH segmentation method in the research environment.

摘要

目的

脑白质高信号(WMH)是一种常见的影像学表现,提示存在脑小血管病。为了解决基于视觉评分量表出现的问题,已经开发了一些针对病灶分割的算法。在本研究中,我们评估了两种自动方法,并将其与视觉和手动分割进行了比较,以确定开源病灶分割工具箱(LST)提供的最稳健的算法。

方法

我们比较了基于视觉评分(Scheltens 量表)的 WMH 数据与 LST 内提供的算法得出的数据。然后,我们比较了手动勾画病灶图得出的空间和体积 WMH 数据与 LST 算法提供的 WMH 数据和病灶图。

结果

与视觉评分相比,我们确定了 LST 提供的算法的最佳初始阈值(病灶增长算法(LGA):初始κ和病灶概率阈值为 0.5;病灶概率算法(LPA)的病灶概率阈值为 0.65)。与手动分割相比,LGA 优于 LPA。

结论

与 Scheltens 评分和手动分割相比,LGA 似乎是定量评估脑小血管病相关性 WMH 的最适合算法。LGA 在研究环境中提供了一种用户友好、有效的 WMH 分割方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9950/7607266/67a110eafc00/10.1177_0300060519880053-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验