Department of Radiology and Nuclear Medicine, VUmc, Amsterdam, The Netherlands.
Department of Anatomy and Neuroscience, VUmc, Amsterdam, The Netherlands.
Neuroimage. 2017 Dec;163:106-114. doi: 10.1016/j.neuroimage.2017.09.011. Epub 2017 Sep 9.
In vivoidentification of white matter lesions plays a key-role in evaluation of patients with multiple sclerosis (MS). Automated lesion segmentation methods have been developed to substitute manual outlining, but evidence of their performance in multi-center investigations is lacking. In this work, five research-domain automated segmentation methods were evaluated using a multi-center MS dataset.
70 MS patients (median EDSS of 2.0 [range 0.0-6.5]) were included from a six-center dataset of the MAGNIMS Study Group (www.magnims.eu) which included 2D FLAIR and 3D T1 images with manual lesion segmentation as a reference. Automated lesion segmentations were produced using five algorithms: Cascade; Lesion Segmentation Toolbox (LST) with both the Lesion growth algorithm (LGA) and the Lesion prediction algorithm (LPA); Lesion-Topology preserving Anatomical Segmentation (Lesion-TOADS); and k-Nearest Neighbor with Tissue Type Priors (kNN-TTP). Main software parameters were optimized using a training set (N = 18), and formal testing was performed on the remaining patients (N = 52). To evaluate volumetric agreement with the reference segmentations, intraclass correlation coefficient (ICC) as well as mean difference in lesion volumes between the automated and reference segmentations were calculated. The Similarity Index (SI), False Positive (FP) volumes and False Negative (FN) volumes were used to examine spatial agreement. All analyses were repeated using a leave-one-center-out design to exclude the center of interest from the training phase to evaluate the performance of the method on 'unseen' center.
Compared to the reference mean lesion volume (4.85 ± 7.29 mL), the methods displayed a mean difference of 1.60 ± 4.83 (Cascade), 2.31 ± 7.66 (LGA), 0.44 ± 4.68 (LPA), 1.76 ± 4.17 (Lesion-TOADS) and -1.39 ± 4.10 mL (kNN-TTP). The ICCs were 0.755, 0.713, 0.851, 0.806 and 0.723, respectively. Spatial agreement with reference segmentations was higher for LPA (SI = 0.37 ± 0.23), Lesion-TOADS (SI = 0.35 ± 0.18) and kNN-TTP (SI = 0.44 ± 0.14) than for Cascade (SI = 0.26 ± 0.17) or LGA (SI = 0.31 ± 0.23). All methods showed highly similar results when used on data from a center not used in software parameter optimization.
The performance of the methods in this multi-center MS dataset was moderate, but appeared to be robust even with new datasets from centers not included in training the automated methods.
在评估多发性硬化症(MS)患者时,对脑白质病变进行体内识别起着关键作用。已经开发出了自动病变分割方法来替代手动勾画,但缺乏其在多中心研究中的性能证据。在这项工作中,使用来自 MAGNIMS 研究小组(www.magnims.eu)的多中心 MS 数据集评估了五种研究领域的自动分割方法,该数据集包含手动病变分割作为参考的 2D FLAIR 和 3D T1 图像。使用五种算法生成自动病变分割:级联算法;Lesion Segmentation Toolbox(LST),同时使用病变生长算法(LGA)和病变预测算法(LPA);Lesion-Topology preserving Anatomical Segmentation(Lesion-TOADS);以及带组织类型先验的 k-Nearest Neighbor(kNN-TTP)。使用训练集(N=18)优化了主要软件参数,并在剩余的患者(N=52)上进行了正式测试。为了评估与参考分割的体积一致性,计算了组内相关系数(ICC)以及自动分割与参考分割之间的病变体积差异。使用相似性指数(SI)、假阳性(FP)体积和假阴性(FN)体积来检查空间一致性。所有分析均使用离开一个中心的设计重复进行,以排除训练阶段中感兴趣的中心,以评估该方法在“未见过”中心的性能。
与参考平均病变体积(4.85±7.29 mL)相比,这些方法的平均差异分别为 1.60±4.83(级联)、2.31±7.66(LGA)、0.44±4.68(LPA)、1.76±4.17(Lesion-TOADS)和-1.39±4.10 mL(kNN-TTP)。ICC 分别为 0.755、0.713、0.851、0.806 和 0.723。与级联或 LGA 相比,LPA(SI=0.37±0.23)、Lesion-TOADS(SI=0.35±0.18)和 kNN-TTP(SI=0.44±0.14)的空间一致性更高。当在未用于软件参数优化的中心的数据上使用所有方法时,结果高度相似。
这些方法在多中心 MS 数据集上的性能中等,但即使使用来自未训练自动方法的中心的新数据集,其性能似乎也很稳健。