Wong-Leung Jennifer, Yang Inseok, Li Ziyuan, Karuturi Siva Krishna, Fu Lan, Tan Hark Hoe, Jagadish Chennupati
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT2601, Australia.
Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT2601, Australia.
Adv Mater. 2020 May;32(18):e1904359. doi: 10.1002/adma.201904359. Epub 2019 Oct 17.
III-V semiconductor nanowires offer potential new device applications because of the unique properties associated with their 1D geometry and the ability to create quantum wells and other heterostructures with a radial and an axial geometry. Here, an overview of challenges in the bottom-up approaches for nanowire synthesis using catalyst and catalyst-free methods and the growth of axial and radial heterostructures is given. The work on nanowire devices such as lasers, light emitting nanowires, and solar cells and an overview of the top-down approaches for water splitting technologies is reviewed. The authors conclude with an analysis of the research field and the future research directions.
III-V族半导体纳米线因其与一维几何结构相关的独特性质,以及能够创建具有径向和轴向几何结构的量子阱和其他异质结构,而提供了潜在的新器件应用。本文概述了使用催化剂和无催化剂方法进行纳米线合成的自下而上方法中的挑战,以及轴向和径向异质结构的生长。综述了纳米线器件(如激光器、发光纳米线和太阳能电池)的研究工作,以及水分解技术的自上而下方法。作者最后对该研究领域进行了分析并展望了未来的研究方向。