Suppr超能文献

拟南芥 NADP-苹果酸酶 1 的功能丧失导致对铝胁迫的耐受性增强。

Loss of function of Arabidopsis NADP-malic enzyme 1 results in enhanced tolerance to aluminum stress.

机构信息

Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.

Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225, Düsseldorf, Germany.

出版信息

Plant J. 2020 Feb;101(3):653-665. doi: 10.1111/tpj.14571. Epub 2019 Nov 20.

Abstract

In acidic soils, aluminum (Al) toxicity is a significant limitation to crop production worldwide. Given its Al-binding capacity, malate allows internal as well as external detoxification strategies to cope with Al stress, but little is known about the metabolic processes involved in this response. Here, we analyzed the relevance of NADP-dependent malic enzyme (NADP-ME), which catalyzes the oxidative decarboxylation of malate, in Al tolerance. Plants lacking NADP-ME1 (nadp-me1) display reduced inhibition of root elongation along Al treatment compared with the wild type (wt). Moreover, wt roots exposed to Al show a drastic decrease in NADP-ME1 transcript levels. Although malate levels in seedlings and root exudates are similar in nadp-me1 and wt, a significant increase in intracellular malate is observed in roots of nadp-me1 after long exposure to Al. The nadp-me1 plants also show a lower H O content in root apices treated with Al and no inhibition of root elongation when exposed to glutamate, an amino acid implicated in Al signaling. Proteomic studies showed several differentially expressed proteins involved in signal transduction, primary metabolism and protection against biotic and other abiotic stimuli and redox processes in nadp-me1, which may participate directly or indirectly in Al tolerance. The results indicate that NADP-ME1 is involved in adjusting the malate levels in the root apex, and its loss results in an increased content of this organic acid. Furthermore, the results suggest that NADP-ME1 affects signaling processes, such as the generation of reactive oxygen species and those that involve glutamate, which could lead to inhibition of root growth.

摘要

在酸性土壤中,铝(Al)毒性是全球作物生产的一个重大限制因素。由于苹果酸具有与 Al 结合的能力,因此它可以使植物内部和外部同时采取解毒策略来应对 Al 胁迫,但人们对参与这一反应的代谢过程知之甚少。在这里,我们分析了依赖 NADP 的苹果酸酶(NADP-ME)的相关性,该酶催化苹果酸的氧化脱羧,从而对 Al 耐受性产生影响。与野生型(wt)相比,缺乏 NADP-ME1(nadp-me1)的植物在 Al 处理下根伸长的抑制程度降低。此外,暴露于 Al 的 wt 根显示 NADP-ME1 转录本水平急剧下降。尽管 nadp-me1 和 wt 幼苗和根分泌物中的苹果酸水平相似,但在 nadp-me1 长时间暴露于 Al 后,观察到细胞内苹果酸含量显著增加。nadp-me1 植物在根尖端用 Al 处理时也显示出较低的 H O 含量,并且在暴露于谷氨酸时根伸长不受抑制,谷氨酸是一种与 Al 信号传导有关的氨基酸。蛋白质组学研究表明,在 nadp-me1 中涉及信号转导、初级代谢以及对生物和其他非生物胁迫和氧化还原过程的保护的几种差异表达蛋白,这些蛋白可能直接或间接地参与 Al 耐受性。结果表明,NADP-ME1 参与调节根尖的苹果酸水平,其缺失导致该有机酸含量增加。此外,结果表明 NADP-ME1 影响信号转导过程,例如活性氧的产生以及涉及谷氨酸的过程,这可能导致根生长受到抑制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验