Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
Nat Chem Biol. 2019 Nov;15(11):1120-1128. doi: 10.1038/s41589-019-0386-3. Epub 2019 Oct 21.
Characterizing the adaptive landscapes that encompass the emergence of novel enzyme functions can provide molecular insights into both enzymatic and evolutionary mechanisms. Here, we combine ancestral protein reconstruction with biochemical, structural and mutational analyses to characterize the functional evolution of methyl-parathion hydrolase (MPH), an organophosphate-degrading enzyme. We identify five mutations that are necessary and sufficient for the evolution of MPH from an ancestral dihydrocoumarin hydrolase. In-depth analyses of the adaptive landscapes encompassing this evolutionary transition revealed that the mutations form a complex interaction network, defined in part by higher-order epistasis, that constrained the adaptive pathways available. By also characterizing the adaptive landscapes in terms of their functional activities towards three additional organophosphate substrates, we reveal that subtle differences in the polarity of the substrate substituents drastically alter the network of epistatic interactions. Our work suggests that the mutations function collectively to enable substrate recognition via subtle structural repositioning.
对包含新酶功能出现的适应景观进行特征描述,可以为酶和进化机制提供分子层面的见解。在这里,我们将祖先蛋白重建与生化、结构和突变分析相结合,对有机磷降解酶甲基对硫磷水解酶(MPH)的功能进化进行了特征描述。我们确定了五个突变,这些突变对于从祖先二氢香豆素水解酶进化而来的 MPH 是必需且充分的。对包含这一进化转变的适应景观的深入分析表明,这些突变形成了一个复杂的相互作用网络,部分由高级上位性定义,限制了可用的适应途径。通过进一步根据三种额外的有机磷底物的功能活性来描述适应景观,我们揭示了底物取代基的极性的细微差异极大地改变了上位性相互作用网络。我们的工作表明,这些突变通过微妙的结构重定位共同作用,使底物识别成为可能。