Suppr超能文献

进化尺度酶学有助于探索崎岖的催化格局。

Evolutionary-scale enzymology enables exploration of a rugged catalytic landscape.

作者信息

Muir Duncan F, Asper Garrison P R, Notin Pascal, Posner Jacob A, Marks Debora S, Keiser Michael J, Pinney Margaux M

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.

Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA.

出版信息

Science. 2025 Jun 12;388(6752):eadu1058. doi: 10.1126/science.adu1058.

Abstract

Quantitatively mapping enzyme sequence-catalysis landscapes remains a critical challenge in understanding enzyme function, evolution, and design. In this study, we leveraged emerging microfluidic technology to measure catalytic constants- and -for hundreds of diverse orthologs and mutants of adenylate kinase (ADK). We dissected this sequence-catalysis landscape's topology, navigability, and mechanistic underpinnings, revealing catalytically heterogeneous neighborhoods organized by domain architecture. These results challenge long-standing hypotheses in enzyme adaptation, demonstrating that thermophilic enzymes are not universally slower than their mesophilic counterparts. Semisupervised models that combine our data with the rich sequence representations from large protein language models predict orthologous ADK-sequence catalytic parameters better than existing approaches. Our work demonstrates a promising strategy for dissecting sequence-catalysis landscapes across enzymatic evolution, opening previously unexplored avenues for enzyme engineering and functional prediction.

摘要

对酶的序列-催化景观进行定量映射,仍然是理解酶的功能、进化和设计方面的一项关键挑战。在本研究中,我们利用新兴的微流控技术测量了腺苷酸激酶(ADK)数百种不同直系同源物和突变体的催化常数。我们剖析了这种序列-催化景观的拓扑结构、可导航性和机制基础,揭示了由结构域结构组织的催化异质邻域。这些结果挑战了酶适应性方面长期存在的假设,表明嗜热酶并不普遍比它们的中温对应物慢。将我们的数据与来自大型蛋白质语言模型的丰富序列表示相结合的半监督模型,比现有方法能更好地预测直系同源ADK序列的催化参数。我们的工作展示了一种剖析整个酶促进化过程中序列-催化景观的有前景的策略,为酶工程和功能预测开辟了以前未探索的途径。

相似文献

5
A role for conformational changes in enzyme catalysis.构象变化在酶催化中的作用。
Biophys J. 2024 Jun 18;123(12):1563-1578. doi: 10.1016/j.bpj.2024.04.030. Epub 2024 May 3.

本文引用的文献

4
Machine learning for functional protein design.用于功能性蛋白质设计的机器学习
Nat Biotechnol. 2024 Feb;42(2):216-228. doi: 10.1038/s41587-024-02127-0. Epub 2024 Feb 15.
5
The specious art of single-cell genomics.单细胞基因组学的似是而非的艺术。
PLoS Comput Biol. 2023 Aug 17;19(8):e1011288. doi: 10.1371/journal.pcbi.1011288. eCollection 2023 Aug.
8
ColabFold: making protein folding accessible to all.ColabFold:让蛋白质折叠变得人人可用。
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验