Suppr超能文献

存在强光物质相互作用时分子的非绝热分子动力学。

Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions.

机构信息

Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

J Chem Phys. 2019 Oct 21;151(15):154109. doi: 10.1063/1.5116550.

Abstract

When the interaction between a molecular system and confined light modes in an optical or plasmonic cavity is strong enough to overcome the dissipative process, hybrid light-matter states (polaritons) become the fundamental excitations in the system. The mixing between the light and matter characters modifies the photophysical and photochemical properties. Notably, it was reported that these polaritons can be employed to control photochemical reactions, charge and energy transfer, and other processes. In addition, according to recent studies, vibrational strong coupling can be employed to resonantly enhance the thermally-activated chemical reactions. In this work, a theoretical model and an efficient numerical method for studying the dynamics of molecules strongly interacting with quantum light are developed based on nonadiabatic excited-state molecular dynamics. The methodology was employed to study the cis-trans photoisomerization of a realistic molecule in a cavity. Numerical simulations demonstrate that the photochemical reactions can be controlled by tuning the properties of the cavity. In the calculated example, the isomerization is suppressed when polaritonic states develop a local minimum on the lower polaritonic state. Moreover, the observed reduction of isomerization is tunable via the photon energy and light-molecule coupling strength. However, the fluctuation in the transition dipole screens the effect of light-matter, which makes it harder to tune the photochemical properties via the coupling strength. These insights suggest quantum control of photochemical reactions is possible by specially designed photonic or plasmonic cavities.

摘要

当分子系统与光学或等离激元腔中的受限光模式之间的相互作用强到足以克服耗散过程时,混合光物质态(极化激元)成为系统中的基本激发态。光与物质特性的混合改变了光物理和光化学性质。值得注意的是,据报道,这些极化激元可用于控制光化学反应、电荷和能量转移以及其他过程。此外,根据最近的研究,振动强耦合可用于共振增强热激活化学反应。在这项工作中,基于非绝热激发态分子动力学,开发了一种用于研究与量子光强相互作用的分子动力学的理论模型和高效数值方法。该方法用于研究腔中真实分子的顺反光异构化。数值模拟表明,可以通过调节腔的性质来控制光化学反应。在计算示例中,当极化激元态在较低的极化激元态上形成局部最小值时,异构化会受到抑制。此外,通过光子能量和光分子耦合强度可以调节观察到的异构化减少。然而,跃迁偶极子的波动屏蔽了光物质的作用,这使得通过耦合强度来调节光化学性质变得更加困难。这些见解表明,可以通过专门设计的光子或等离激元腔实现对光化学反应的量子控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验