Suppr超能文献

[基于心跳的心律失常端到端分类]

[Heartbeat-based end-to-end classification of arrhythmias].

作者信息

Deng Li, Fu Rong

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2019 Sep 30;39(9):1071-1077. doi: 10.12122/j.issn.1673-4254.2019.09.11.

Abstract

OBJECTIVE

We propose a heartbeat-based end-to-end classification of arrhythmias to improve the classification performance for supraventricular ectopic beat (SVEB) and ventricular ectopic beat (VEB).

METHODS

The ECG signals were preprocessed by heartbeat segmentation and heartbeat alignment. An arrhythmia classifier was constructed based on convolutional neural network, and the proposed loss function was used to train the classifier.

RESULTS

The proposed algorithm was verified on MIT-BIH arrhythmia database. The AUC of the proposed loss function for SVEB and VEB reached 0.77 and 0.98, respectively. With the first 5 min segment as the local data, the diagnostic sensitivities for SVEB and VEB were 78.28% and 98.88%, respectively; when 0, 50, 100, and 150 samples were used as the local data, the diagnostic sensitivities for SVEB and VEB reached 82.25% and 93.23%, respectively.

CONCLUSIONS

The proposed method effectively reduces the negative impact of class-imbalance and improves the diagnostic sensitivities for SVEB and VEB, and thus provides a new solution for automatic arrhythmia classification.

摘要

目的

我们提出一种基于心跳的心律失常端到端分类方法,以提高室上性异位搏动(SVEB)和室性异位搏动(VEB)的分类性能。

方法

通过心跳分割和心跳对齐对心电图信号进行预处理。基于卷积神经网络构建心律失常分类器,并使用所提出的损失函数训练该分类器。

结果

所提出的算法在MIT-BIH心律失常数据库上得到验证。所提出的损失函数对SVEB和VEB的AUC分别达到0.77和0.98。以前5分钟片段作为局部数据时,SVEB和VEB的诊断敏感性分别为78.28%和98.88%;当使用0、50、100和150个样本作为局部数据时,SVEB和VEB的诊断敏感性分别达到82.25%和93.23%。

结论

所提出的方法有效降低了类别不平衡的负面影响,提高了SVEB和VEB的诊断敏感性,从而为心律失常自动分类提供了一种新的解决方案。

相似文献

1
[Heartbeat-based end-to-end classification of arrhythmias].
Nan Fang Yi Ke Da Xue Xue Bao. 2019 Sep 30;39(9):1071-1077. doi: 10.12122/j.issn.1673-4254.2019.09.11.
2
Are we training our heartbeat classification algorithms properly?
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6363-6366. doi: 10.1109/EMBC.2019.8857692.
3
An ECG Heartbeat Classification Method Based on Deep Convolutional Neural Network.
J Healthc Eng. 2021 Sep 27;2021:7167891. doi: 10.1155/2021/7167891. eCollection 2021.
4
[Deep residual convolutional neural network for recognition of electrocardiogram signal arrhythmias].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019 Apr 25;36(2):189-198. doi: 10.7507/1001-5515.201712031.
5
Inter-Patient ECG Classification With Symbolic Representations and Multi-Perspective Convolutional Neural Networks.
IEEE J Biomed Health Inform. 2020 May;24(5):1321-1332. doi: 10.1109/JBHI.2019.2942938. Epub 2019 Sep 23.
7
Automatic classification of heartbeats using ECG morphology and heartbeat interval features.
IEEE Trans Biomed Eng. 2004 Jul;51(7):1196-206. doi: 10.1109/TBME.2004.827359.
10
Bidirectional Recurrent Neural Network And Convolutional Neural Network (BiRCNN) For ECG Beat Classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:2555-2558. doi: 10.1109/EMBC.2018.8512752.

引用本文的文献

1
[Heartbeat-aware convolutional neural network for R-peak detection of wearable device ECG data].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 Mar 20;42(3):375-383. doi: 10.12122/j.issn.1673-4254.2022.03.09.
2
[An arrhythmia classification method based on deep learning parallel network model].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Aug 31;41(9):1296-1303. doi: 10.12122/j.issn.1673-4254.2021.09.02.

本文引用的文献

1
Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks.
IEEE J Biomed Health Inform. 2019 Jul;23(4):1574-1584. doi: 10.1109/JBHI.2018.2871510. Epub 2018 Sep 20.
2
Classification of ECG beats using deep belief network and active learning.
Med Biol Eng Comput. 2018 Oct;56(10):1887-1898. doi: 10.1007/s11517-018-1815-2. Epub 2018 Apr 12.
3
Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks.
IEEE Trans Biomed Eng. 2016 Mar;63(3):664-75. doi: 10.1109/TBME.2015.2468589. Epub 2015 Aug 14.
5
Heartbeat classification using morphological and dynamic features of ECG signals.
IEEE Trans Biomed Eng. 2012 Oct;59(10):2930-41. doi: 10.1109/TBME.2012.2213253. Epub 2012 Aug 15.
6
A generic and robust system for automated patient-specific classification of ECG signals.
IEEE Trans Biomed Eng. 2009 May;56(5):1415-26. doi: 10.1109/TBME.2009.2013934. Epub 2009 Feb 6.
7
A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features.
IEEE Trans Biomed Eng. 2006 Dec;53(12 Pt 1):2535-43. doi: 10.1109/TBME.2006.883802.
8
Automatic classification of heartbeats using ECG morphology and heartbeat interval features.
IEEE Trans Biomed Eng. 2004 Jul;51(7):1196-206. doi: 10.1109/TBME.2004.827359.
9
The impact of the MIT-BIH arrhythmia database.
IEEE Eng Med Biol Mag. 2001 May-Jun;20(3):45-50. doi: 10.1109/51.932724.
10
A real-time QRS detection algorithm.
IEEE Trans Biomed Eng. 1985 Mar;32(3):230-6. doi: 10.1109/TBME.1985.325532.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验