Suppr超能文献

一种用于对心电图信号进行自动化患者特异性分类的通用且强大的系统。

A generic and robust system for automated patient-specific classification of ECG signals.

作者信息

Ince Turker, Kiranyaz Serkan, Gabbouj Moncef

机构信息

Computer Engineering Department, Izmir University of Economics, Izmir 35330, Turkey.

出版信息

IEEE Trans Biomed Eng. 2009 May;56(5):1415-26. doi: 10.1109/TBME.2009.2013934. Epub 2009 Feb 6.

Abstract

This paper presents a generic and patient-specific classification system designed for robust and accurate detection of ECG heartbeat patterns. The proposed feature extraction process utilizes morphological wavelet transform features, which are projected onto a lower dimensional feature space using principal component analysis, and temporal features from the ECG data. For the pattern recognition unit, feedforward and fully connected artificial neural networks, which are optimally designed for each patient by the proposed multidimensional particle swarm optimization technique, are employed. By using relatively small common and patient-specific training data, the proposed classification system can adapt to significant interpatient variations in ECG patterns by training the optimal network structure, and thus, achieves higher accuracy over larger datasets. The classification experiments over a benchmark database demonstrate that the proposed system achieves such average accuracies and sensitivities better than most of the current state-of-the-art algorithms for detection of ventricular ectopic beats (VEBs) and supra-VEBs (SVEBs). Over the entire database, the average accuracy-sensitivity performances of the proposed system for VEB and SVEB detections are 98.3%-84.6% and 97.4%-63.5%, respectively. Finally, due to its parameter-invariant nature, the proposed system is highly generic, and thus, applicable to any ECG dataset.

摘要

本文提出了一种通用的、针对患者的分类系统,旨在对心电图心跳模式进行稳健且准确的检测。所提出的特征提取过程利用形态小波变换特征,这些特征通过主成分分析投影到低维特征空间,并利用心电图数据中的时间特征。对于模式识别单元,采用了通过所提出的多维粒子群优化技术为每个患者进行优化设计的前馈和全连接人工神经网络。通过使用相对较少的通用和特定于患者的训练数据,所提出的分类系统可以通过训练最优网络结构来适应心电图模式中患者之间的显著差异,因此,在更大的数据集上实现更高的准确率。在一个基准数据库上进行的分类实验表明,所提出的系统在检测室性早搏(VEB)和室上性早搏(SVEB)方面,比当前大多数最先进的算法具有更好的平均准确率和灵敏度。在整个数据库上,所提出的系统检测VEB和SVEB的平均准确率-灵敏度性能分别为98.3%-84.6%和97.4%-63.5%。最后,由于其参数不变的性质,所提出的系统具有高度通用性,因此适用于任何心电图数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验