Pande Vikram, Viswanathan Venkatasubramanian
Department of Mechanical Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States.
J Phys Chem Lett. 2019 Nov 21;10(22):7031-7036. doi: 10.1021/acs.jpclett.9b02717. Epub 2019 Nov 1.
Electrolyte stability against oxidation is one of the important factors limiting the development of high energy density batteries. The highest occupied molecular orbital (HOMO) level of solvent molecules has been traditionally used for understanding trends in their oxidative stability, but this assumes a noninteracting environment. However, solvent HOMO levels are renormalized because of molecules in their solvation shells. In this work, we first demonstrate an inexpensive and accurate method to determine the HOMO level of the solvent followed by simple descriptors for renormalization of the HOMO level due to different electrolyte components. The descriptors are based on Gutmann donor and acceptor numbers of the solvent and other components. The method uses fast generalized gradient approximation-level density functional theory calculations compared to previously used expensive, experimental data-dependent methods. This method can be used to screen for unexplored stable solvents among the large number of known organic compounds to design novel high-voltage stable electrolytes.
电解质抗氧化稳定性是限制高能量密度电池发展的重要因素之一。传统上,溶剂分子的最高占据分子轨道(HOMO)能级被用于理解其氧化稳定性趋势,但这是基于非相互作用环境的假设。然而,由于溶剂化壳层中的分子,溶剂的HOMO能级会被重新归一化。在这项工作中,我们首先展示了一种廉价且准确的方法来确定溶剂的HOMO能级,随后给出了由于不同电解质成分导致HOMO能级重新归一化的简单描述符。这些描述符基于溶剂和其他成分的古特曼给体和受体数。与之前使用的昂贵的、依赖实验数据的方法相比,该方法采用快速广义梯度近似水平的密度泛函理论计算。这种方法可用于在大量已知有机化合物中筛选未探索的稳定溶剂,以设计新型高压稳定电解质。