Ahmad Zeeshan, Hong Zijian, Viswanathan Venkatasubramanian
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213.
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213;
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26672-26680. doi: 10.1073/pnas.2008841117. Epub 2020 Oct 9.
Dendrite-free electrodeposition of lithium metal is necessary for the adoption of high energy-density rechargeable lithium metal batteries. Here, we demonstrate a mechanism of using a liquid crystalline electrolyte to suppress dendrite growth with a lithium metal anode. A nematic liquid crystalline electrolyte modifies the kinetics of electrodeposition by introducing additional overpotential due to its bulk-distortion and anchoring free energy. By extending the phase-field model, we simulate the morphological evolution of the metal anode and explore the role of bulk-distortion and anchoring strengths on the electrodeposition process. We find that adsorption energy of liquid crystalline molecules on a lithium surface can be a good descriptor for the anchoring energy and obtain it using first-principles density functional theory calculations. Unlike other extrinsic mechanisms, we find that liquid crystals with high anchoring strengths can ensure smooth electrodeposition of lithium metal, thus paving the way for practical applications in rechargeable batteries based on metal anodes.
锂金属的无枝晶电沉积对于采用高能量密度的可充电锂金属电池至关重要。在此,我们展示了一种使用液晶电解质抑制锂金属阳极枝晶生长的机制。向列型液晶电解质通过其本体畸变和锚定自由能引入额外的过电位,从而改变电沉积动力学。通过扩展相场模型,我们模拟了金属阳极的形态演变,并探讨了本体畸变和锚定强度在电沉积过程中的作用。我们发现液晶分子在锂表面的吸附能可以很好地描述锚定能,并使用第一性原理密度泛函理论计算得到它。与其他外在机制不同,我们发现具有高锚定强度的液晶可以确保锂金属的平滑电沉积,从而为基于金属阳极的可充电电池的实际应用铺平道路。