Suppr超能文献

对深度运动的错误感知源于视网膜信号的不完全转换。

Misperception of motion in depth originates from an incomplete transformation of retinal signals.

作者信息

Murdison T Scott, Leclercq Guillaume, Lefèvre Philippe, Blohm Gunnar

机构信息

Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.

Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada.

出版信息

J Vis. 2019 Oct 1;19(12):21. doi: 10.1167/19.12.21.

Abstract

Depth perception requires the use of an internal model of the eye-head geometry to infer distance from binocular retinal images and extraretinal 3D eye-head information, particularly ocular vergence. Similarly, for motion in depth perception, gaze angle is required to correctly interpret the spatial direction of motion from retinal images; however, it is unknown whether the brain can make adequate use of extraretinal version and vergence information to correctly transform binocular retinal motion into 3D spatial coordinates. Here we tested this hypothesis by asking participants to reconstruct the spatial trajectory of an isolated disparity stimulus moving in depth either peri-foveally or peripherally while participants' gaze was oriented at different vergence and version angles. We found large systematic errors in the perceived motion trajectory that reflected an intermediate reference frame between a purely retinal interpretation of binocular retinal motion (not accounting for veridical vergence and version) and the spatially correct motion. We quantify these errors with a 3D reference frame model accounting for target, eye, and head position upon motion percept encoding. This model could capture the behavior well, revealing that participants tended to underestimate their version by up to 17%, overestimate their vergence by up to 22%, and underestimate the overall change in retinal disparity by up to 64%, and that the use of extraretinal information depended on retinal eccentricity. Since such large perceptual errors are not observed in everyday viewing, we suggest that both monocular retinal cues and binocular extraretinal signals are required for accurate real-world motion in depth perception.

摘要

深度感知需要利用眼-头几何结构的内部模型,从双眼视网膜图像和视网膜外三维眼-头信息(特别是眼的辐辏)来推断距离。同样,对于深度感知中的运动,需要注视角度来从视网膜图像正确解释运动的空间方向;然而,大脑是否能够充分利用视网膜外的旋转和辐辏信息,将双眼视网膜运动正确转换为三维空间坐标尚不清楚。在这里,我们通过要求参与者在注视方向处于不同辐辏和旋转角度时,重建在中央凹周围或周边进行深度移动的孤立视差刺激的空间轨迹,来检验这一假设。我们发现在感知到的运动轨迹中存在较大的系统性误差,这些误差反映了在对双眼视网膜运动进行纯粹视网膜解释(不考虑真实的辐辏和旋转)和空间正确运动之间的一个中间参考系。我们用一个三维参考系模型对这些误差进行量化,该模型在运动感知编码时考虑目标、眼睛和头部位置。这个模型能够很好地捕捉这种行为,揭示出参与者倾向于低估他们的旋转多达17%,高估他们的辐辏多达22%,以及低估视网膜视差的总体变化多达64%,并且视网膜外信息的使用取决于视网膜离心率。由于在日常观察中没有观察到如此大的感知误差,我们认为在深度感知中的准确真实世界运动需要单眼视网膜线索和双眼视网膜外信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验