Center for Perceptual Systems, The University of Texas, Austin, Texas.
Center for Learning and Memory, The University of Texas, Austin, Texas.
J Neurophysiol. 2020 Aug 1;124(2):623-633. doi: 10.1152/jn.00697.2019. Epub 2020 Jul 29.
We stabilize the dynamic visual world on our retina by moving our eyes in response to motion signals. Coordinated movements between the two eyes are characterized as version when both eyes move in the same direction and vergence when the two eyes move in opposite directions. Vergence eye movements are necessary to track objects in three dimensions. In primates they can be elicited by intraocular differences in either spatial signals (disparity) or velocity, requiring the integration of left and right eye inputs. Whether mice are capable of similar behaviors is not known. To address this issue, we measured vergence eye movements in mice using a stereoscopic stimulus known to elicit vergence eye movements in primates. We found that mice also exhibit vergence eye movements, although at a low gain and that the primary driver of these vergence eye movements is interocular motion. Spatial disparity cues alone are ineffective. We also found that the vergence eye movements we observed in mice were robust to silencing visual cortex and to manipulations that disrupt the normal development of binocularity in visual cortex. A sublinear combination of motor commands driven by monocular signals is sufficient to account for our results. The visual system integrates signals from the left and right eye to generate a representation of the world in depth. The binocular integration of signals may be observed from the coordinated vergence eye movements elicited by object motion in depth. We explored the circuits and signals responsible for these vergence eye movements in rodent and find these vergence eye movements are generated by a comparison of the motion and not spatial visual signals.
我们通过眼睛的运动对运动信号做出反应,从而使视网膜上的动态视觉世界稳定下来。双眼的协调运动表现为同向运动(version)和异向运动(vergence),当双眼朝相同或相反方向运动时分别出现同向运动和异向运动。为了追踪三维空间中的物体,需要进行眼的会聚运动。在灵长类动物中,这种运动可以通过眼内空间信号(视差)或速度的差异来诱发,这需要整合左右眼的输入。老鼠是否能够表现出类似的行为尚不清楚。为了解决这个问题,我们使用一种在灵长类动物中已知能诱发会聚运动的立体刺激来测量老鼠的会聚眼运动。我们发现,老鼠也表现出会聚眼运动,尽管增益较低,并且这些会聚眼运动的主要驱动因素是眼间运动。单纯的空间视差线索是无效的。我们还发现,我们在老鼠身上观察到的会聚眼运动对视觉皮层的沉默以及对破坏视觉皮层双眼正常发育的操作具有很强的稳定性。由单眼信号驱动的运动指令的次线性组合足以解释我们的结果。视觉系统整合来自左眼和右眼的信号,以生成对深度的世界的表示。对深度中物体运动引起的会聚眼运动的协调进行 binocular 整合可以观察到信号的 binocular 整合。我们在啮齿动物中探索了负责这些会聚眼运动的电路和信号,发现这些会聚眼运动是通过对运动而不是空间视觉信号的比较产生的。