Suppr超能文献

基于生物物理多尺度骨骼肌模型的机电延迟特性分析

Characterization of Electromechanical Delay Based on a Biophysical Multi-Scale Skeletal Muscle Model.

作者信息

Schmid Laura, Klotz Thomas, Siebert Tobias, Röhrle Oliver

机构信息

Chair for Continuum Biomechanics and Mechanobiology, Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.

Department of Motion and Exercise Science, Institute of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.

出版信息

Front Physiol. 2019 Oct 9;10:1270. doi: 10.3389/fphys.2019.01270. eCollection 2019.

Abstract

Skeletal muscles can be voluntary controlled by the somatic nervous system yielding an active contractile stress response. Thereby, the active muscle stresses are transmitted to the skeleton by a cascade of connective tissue and thus enable motion. In the context of joint perturbations as well as the assessment of the complexity of neural control, the initial phase of the muscle-tendon system's stress response has a particular importance and is analyzed by means of electromechanical delay (EMD). EMD is defined as the time lag between the stimulation of a muscle and a measurable change in force output. While EMD is believed to depend on multiple structures / phenomena, it is hard to separate their contributions experimentally. We employ a physiologically detailed, three-dimensional, multi-scale model of an idealized muscle-tendon system to analyze the influence of (i) muscle and tendon length, (ii) the material behavior of skeletal muscle and tendon tissue, (iii) the chemo-electro-mechanical behavior of the muscle fibers and (iv) neural control on EMD. Comparisons with experimental data show that simulated EMD values are within the physiological range, i.e., between 6.1 and 68.6 ms, and that the model is able to reproduce the characteristic EMD-stretch curve, yielding the minimum EMD at optimal length. Simulating consecutive recruitment of motor units increases EMD by more than 20 ms, indicating that during voluntary contractions neural control is the dominant factor determining EMD. In contrast, the muscle fiber action potential conduction velocity is found to influence EMD even of a 27 cm long muscle by not more than 3.7 ms. We further demonstrate that in conditions where only little pre-stretch is applied to a muscle-tendon system, the mechanical behavior of both muscle and tendon tissue considerably impacts EMD. Predicting EMD for different muscle and tendon lengths indicates that the anatomy of a specific muscle-tendon system is optimized for its function, i.e., shorter tendon lengths are beneficial to minimize the neural control effort for muscles primary acting as motor in concentric contractions.

摘要

骨骼肌可由躯体神经系统进行自主控制,产生主动收缩应力反应。由此,主动肌肉应力通过一系列结缔组织传递至骨骼,从而实现运动。在关节扰动以及神经控制复杂性评估的背景下,肌肉 - 肌腱系统应力反应的初始阶段具有特殊重要性,并通过机电延迟(EMD)进行分析。EMD定义为肌肉受到刺激与力输出出现可测量变化之间的时间延迟。虽然人们认为EMD取决于多种结构/现象,但通过实验很难区分它们各自的作用。我们采用一个理想化肌肉 - 肌腱系统的生理细节三维多尺度模型,来分析(i)肌肉和肌腱长度、(ii)骨骼肌和肌腱组织的材料特性、(iii)肌纤维的化学 - 电 - 机械特性以及(iv)神经控制对EMD的影响。与实验数据的比较表明,模拟的EMD值处于生理范围内,即6.1至68.6毫秒之间,并且该模型能够重现特征性的EMD - 拉伸曲线,在最佳长度时产生最小的EMD。模拟运动单位的连续募集会使EMD增加超过20毫秒,这表明在自主收缩过程中,神经控制是决定EMD的主导因素。相比之下,发现肌纤维动作电位传导速度对长达27厘米的肌肉的EMD影响不超过3.7毫秒。我们进一步证明,在对肌肉 - 肌腱系统施加很少预拉伸的情况下,肌肉和肌腱组织的力学行为对EMD有相当大的影响。预测不同肌肉和肌腱长度下的EMD表明,特定肌肉 - 肌腱系统的解剖结构是为其功能而优化的,即较短的肌腱长度有利于在同心收缩中主要作为运动肌的肌肉最小化神经控制的努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af7b/6795131/626ce4c3c2c7/fphys-10-01270-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验