Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Pfaffenwaldring 5a, 70569, Stuttgart, Germany; Stuttgart Centre for Simulation Sciences (SC SimTech), Pfaffenwaldring 5a, 70569, Stuttgart, Germany.
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104-6315, USA.
J Mech Behav Biomed Mater. 2019 Sep;97:171-186. doi: 10.1016/j.jmbbm.2019.05.012. Epub 2019 May 13.
This work presents a novel microstructurally-based, multi-scale model describing the passive behaviour of skeletal muscle tissue. The model is based on the detailed description of the mechanically relevant parts of the microstructure. The effective constitutive material response is obtained by a homogenisation of mechanical energies and stresses from the micro- to the macroscale. The key feature of the new model is that it does not require any constitutive assumptions or calibration on the macroscale. The effective mechanical response is a pure consequence of the stiffness and structural arrangement of microscopic components. In this sense, the model inherits its direction-dependent properties directly from the microstructure. This is achieved by employing a Voigt-type homogenisation and by utilising for the complex collageneous network of the extracellular matrix an angular integration method. For physiologically realistic microscopic model parameters, this model reveals that muscle tissue exhibits a tensile stiffness that is larger transverse to the muscle fibre than in muscle fibre direction. This highlights that muscle tissue in general does not obey a classical fibre-reinforcement solely for tensile stretches of the muscle fibres but rather a general transversely isotropic behaviour. Moreover, the formulation of the effective macroscopic energy is provided in terms of well-known macroscopic strain invariants, which allows for an easy application of the model in standard numerical settings.
本文提出了一种新的基于微观结构的多尺度模型,用于描述骨骼肌肉组织的被动行为。该模型基于对微观结构中力学相关部分的详细描述。通过从微观到宏观的能量和应力的均匀化,得到了有效的本构材料响应。新模型的关键特征是它不需要在宏观尺度上进行任何本构假设或校准。有效力学响应是微观结构中刚度和结构排列的纯结果。从这个意义上说,该模型直接从微观结构继承了其各向异性的特性。这是通过采用 Voigt 型均匀化并利用细胞外基质的复杂胶原网络的角积分方法来实现的。对于生理上合理的微观模型参数,该模型表明肌肉组织在垂直于肌纤维的方向上的拉伸刚度大于肌纤维方向上的拉伸刚度。这突出表明,肌肉组织通常不遵循仅针对肌纤维拉伸的经典纤维增强,而是具有一般的横向各向同性行为。此外,还以众所周知的宏观应变不变量的形式给出了有效宏观能量的表达式,这使得该模型可以在标准数值设置中轻松应用。