Ghent-Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, Ghent 9000, Belgium.
Laboratory of Pharmaceutical Biotechnology, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
Mol Hum Reprod. 2019 Dec 1;25(12):797-810. doi: 10.1093/molehr/gaz062.
Prevention of mitochondrial DNA (mtDNA) diseases may currently be possible using germline nuclear transfer (NT). However, scientific evidence to compare efficiency of different NT techniques to overcome mtDNA diseases is lacking. Here, we performed four types of NT, including first or second polar body transfer (PB1/2T), maternal spindle transfer (ST) and pronuclear transfer (PNT), using NZB/OlaHsd and B6D2F1 mouse models. Embryo development was assessed following NT, and mtDNA carry-over levels were measured by next generation sequencing (NGS). Moreover, we explored two novel protocols (PB2T-a and PB2T-b) to optimize PB2T using mouse and human oocytes. Chromosomal profiles of NT-generated blastocysts were evaluated using NGS. In mouse, our findings reveal that only PB2T-b successfully leads to blastocysts. There were comparable blastocyst rates among PB1T, PB2T-b, ST and PNT embryos. Furthermore, PB1T and PB2T-b had lower mtDNA carry-over levels than ST and PNT. After extrapolation of novel PB2T-b to human in vitro matured (IVM) oocytes and in vivo matured oocytes with smooth endoplasmic reticulum aggregate (SERa) oocytes, the reconstituted embryos successfully developed to blastocysts at a comparable rate to ICSI controls. PB2T-b embryos generated from IVM oocytes showed a similar euploidy rate to ICSI controls. Nevertheless, our mouse model with non-mutated mtDNAs is different from a mixture of pathogenic and non-pathogenic mtDNAs in a human scenario. Novel PB2T-b requires further optimization to improve blastocyst rates in human. Although more work is required to elucidate efficiency and safety of NT, our study suggests that PBT may have the potential to prevent mtDNA disease transmission.
预防线粒体 DNA(mtDNA)疾病目前可能通过种系核转移(NT)实现。然而,缺乏比较不同 NT 技术克服 mtDNA 疾病效率的科学证据。在这里,我们使用 NZB/OlaHsd 和 B6D2F1 小鼠模型进行了四种类型的 NT,包括第一或第二极体转移(PB1/2T)、母体纺锤体转移(ST)和原核转移(PNT)。在 NT 后评估胚胎发育,并通过下一代测序(NGS)测量 mtDNA 转移水平。此外,我们探索了两种新的方案(PB2T-a 和 PB2T-b)来优化使用小鼠和人卵的 PB2T。使用 NGS 评估 NT 生成的囊胚的染色体图谱。在小鼠中,我们的发现表明只有 PB2T-b 才能成功导致囊胚。PB1T、PB2T-b、ST 和 PNT 胚胎的囊胚率相当。此外,PB1T 和 PB2T-b 的 mtDNA 转移水平低于 ST 和 PNT。将新型 PB2T-b 外推至人体外成熟(IVM)卵和具有光滑内质网聚集(SERa)卵的体内成熟卵后,重构胚胎以与 ICSI 对照相当的速度成功发育为囊胚。从 IVM 卵产生的 PB2T-b 胚胎与 ICSI 对照具有相似的整倍体率。然而,我们的非突变 mtDNA 小鼠模型与人类中存在致病性和非致病性 mtDNA 的混合物不同。新型 PB2T-b 需要进一步优化以提高人类囊胚率。尽管需要做更多的工作来阐明 NT 的效率和安全性,但我们的研究表明,PBT 可能具有预防 mtDNA 疾病传播的潜力。