Department of Gastroenterology and Department of Internal Medicine, University of California Irvine Medical Center, Orange, California, USA.
Docbot, Irvine, California, USA.
Am J Gastroenterol. 2020 Jan;115(1):138-144. doi: 10.14309/ajg.0000000000000429.
Reliable in situ diagnosis of diminutive (≤5 mm) colorectal polyps could allow for "resect and discard" and "diagnose and leave" strategies, resulting in $1 billion cost savings per year in the United States alone. Current methodologies have failed to consistently meet the Preservation and Incorporation of Valuable endoscopic Innovations (PIVIs) initiative thresholds. Convolutional neural networks (CNNs) have the potential to predict polyp pathology and achieve PIVI thresholds in real time.
We developed a CNN-based optical pathology (OP) model using Tensorflow and pretrained on ImageNet, capable of operating at 77 frames per second. A total of 6,223 images of unique colorectal polyps of known pathology, location, size, and light source (white light or narrow band imaging [NBI]) underwent 5-fold cross-training (80%) and validation (20%). Separate fresh validation was performed on 634 polyp images. Surveillance intervals were calculated, comparing OP with true pathology.
In the original validation set, the negative predictive value for adenomas was 97% among diminutive rectum/rectosigmoid polyps. Results were independent of use of NBI or white light. Surveillance interval concordance comparing OP and true pathology was 93%. In the fresh validation set, the negative predictive value was 97% among diminutive polyps in the rectum and rectosigmoid and surveillance concordance was 94%.
This study demonstrates the feasibility of in situ diagnosis of colorectal polyps using CNN. Our model exceeds PIVI thresholds for both "resect and discard" and "diagnose and leave" strategies independent of NBI use. Point-of-care adenoma detection rate and surveillance recommendations are potential added benefits.
可靠的微小(≤5mm)结直肠息肉的原位诊断可以实现“切除并丢弃”和“诊断并保留”策略,仅在美国每年就可节省 10 亿美元的成本。目前的方法未能始终满足保留和纳入有价值的内镜创新(PIVI)计划的标准。卷积神经网络(CNN)具有实时预测息肉病理并达到 PIVI 标准的潜力。
我们使用 TensorFlow 开发了一种基于卷积神经网络的光学病理学(OP)模型,并在 ImageNet 上进行了预训练,能够以每秒 77 帧的速度运行。总共对 6223 张具有已知病理、位置、大小和光源(白光或窄带成像[NBI])的独特结直肠息肉图像进行了 5 折交叉训练(80%)和验证(20%)。另外对 634 张息肉图像进行了新鲜验证。计算了监测间隔,并将 OP 与真实病理进行了比较。
在原始验证集中,微小直肠/直肠乙状结肠息肉的腺瘤阴性预测值为 97%。结果与是否使用 NBI 或白光无关。OP 与真实病理比较的监测间隔一致性为 93%。在新鲜验证集中,直肠和直肠乙状结肠的微小息肉的阴性预测值为 97%,监测一致性为 94%。
本研究证明了使用 CNN 进行结直肠息肉原位诊断的可行性。我们的模型独立于 NBI 的使用,均达到了“切除并丢弃”和“诊断并保留”策略的 PIVI 标准。即时检测腺瘤的检出率和监测建议可能是额外的获益。