Suppr超能文献

使用边际结构模型进行主要分层效应估计和敏感性分析的简单方法:在一项骨折预防试验中的应用

Simple methods for the estimation and sensitivity analysis of principal strata effects using marginal structural models: Application to a bone fracture prevention trial.

作者信息

Uemura Yukari, Taguri Masataka, Kawahara Takuya, Chiba Yasutaka

机构信息

Biostatistics Section, Department of Data Science, Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjyuku-ku, Tokyo, Japan.

Biostatistics Division, Clinical Research Support Center, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.

出版信息

Biom J. 2019 Nov;61(6):1448-1461. doi: 10.1002/bimj.201800038. Epub 2019 Jul 17.

Abstract

In randomized clinical trials, it is often of interest to estimate the effect of treatment on quality of life (QOL), in addition to those on the event itself. When an event occurs in some patients prior to QOL score assessment, investigators may compare QOL scores between patient subgroups defined by the event after randomization. However, owing to postrandomization selection bias, this analysis can mislead investigators about treatment efficacy and result in paradoxical findings. The recent Japanese Osteoporosis Intervention Trial (JOINT-02), which compared the benefits of a combination therapy for fracture prevention with those of a monotherapy, exemplifies the case in point; the average QOL score was higher in the combination therapy arm for the unfractured subgroup but was lower for the fractured subgroup. To address this issue, principal strata effects (PSEs), which are treatment effects estimated within subgroups of individuals stratified by potential intermediate variable, have been discussed in the literature. In this paper, we describe a simple procedure for estimating the PSEs using marginal structural models. This procedure utilizes SAS code for the estimation. In addition, we present a simple sensitivity analysis method for examining the resulting estimates. The analyses of JOINT-02 data using these methods revealed that QOL scores were higher in the combination therapy arm than in the monotherapy arm for both subgroups.

摘要

在随机临床试验中,除了评估治疗对事件本身的影响外,估计治疗对生活质量(QOL)的影响通常也很重要。当在生活质量评分评估之前一些患者发生了某事件时,研究人员可能会比较随机分组后根据该事件定义的患者亚组之间的生活质量评分。然而,由于随机化后的选择偏倚,这种分析可能会误导研究人员对治疗效果的判断,并导致矛盾的结果。最近的日本骨质疏松症干预试验(JOINT - 02)比较了联合治疗与单一疗法预防骨折的益处,就是一个典型例子;在未发生骨折的亚组中,联合治疗组的平均生活质量评分较高,但在发生骨折的亚组中则较低。为了解决这个问题,文献中讨论了主要分层效应(PSEs),即根据潜在中间变量分层的个体亚组内估计的治疗效果。在本文中,我们描述了一种使用边际结构模型估计主要分层效应的简单方法。该方法利用SAS代码进行估计。此外,我们还提出了一种简单的敏感性分析方法来检验所得估计值。使用这些方法对JOINT - 02数据进行分析后发现,两个亚组中联合治疗组的生活质量评分均高于单一疗法组。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验