Suppr超能文献

不同种植体系统的 3D 打印种植导板的准确性和精度:一项体外研究。

Accuracy and precision of 3D-printed implant surgical guides with different implant systems: An in vitro study.

机构信息

Former doctoral student, Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, Va.

Assistant Professor and Director of Biomaterials, Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, Va.

出版信息

J Prosthet Dent. 2020 Jun;123(6):821-828. doi: 10.1016/j.prosdent.2019.05.027. Epub 2019 Oct 23.

Abstract

STATEMENT OF PROBLEM

Implant guided surgery systems promise implant placement accuracy and precision beyond straightforward nonguided surgery. Recently introduced in-office stereolithography systems allow clinicians to produce implant surgical guides themselves. However, different implant designs and osteotomy preparation protocols may produce accuracy and precision differences among the different implant systems.

PURPOSE

The purpose of this in vitro study was to measure the accuracy and precision of 3 implant systems, Tapered Internal implant system (BioHorizons) (BH), NobelReplace Conical (Nobel Biocare) (NB), and Tapered Screw-Vent (Zimmer Biomet) (ZB) when in-office fabricated surgical guides were used.

MATERIAL AND METHODS

A cone beam computed tomography (CBCT) data set of an unidentified patient missing a maxillary right central incisor and intraoral scans of the same patient were used as a model. A software program (3Shape Implant Studio) was used to plan the implant treatment with the 3 implant systems. Three implant surgical guides were fabricated by using a 3D printer (Form 2), and 30 casts were printed. A total of 10 implants for each system were placed in the dental casts by using the manufacturer's recommended guided surgery protocols. After implant placement, postoperative CBCT images were made. The CBCT cast and implant images were superimposed onto the treatment-planning image. The implant positions, mesiodistal, labiopalatal, and vertical, as well as implant angulations were measured in the labiolingual and mesiodistal planes. The displacements from the planning in each dimension were recorded. ANOVA with the Tukey adjusted post hoc pairwise comparisons were used to examine the accuracy and precision of the 3 implant systems (α=.05).

RESULTS

The overall implant displacements were -0.02 ±0.13 mm mesially (M), 0.07 ±0.14 mm distally (D), 0.43 ±0.57 mm labially (L), and 1.26 ±0.80 mm palatally (P); 1.20 ±3.01 mm vertically in the mesiodistal dimension (VMD); 0.69 ±2.03 mm vertically in the labiopalatal dimension (VLP); 1.69 ±1.02 degrees in mesiodistal angulation (AMD); and 1.56 ±0.92 degrees in labiopalatal angulation (ALP). Statistically significant differences (ANOVA) were found in M (P=.026), P (P=.001), VMD (P=.009), AMD (P=.001), and ALP (P=.001). ZB showed the most displacements in the M and vertical dimensions and the least displacements in the P angulation (P<.05), suggesting statistically significant differences among the M, VMD, VLP, AMD, and ALP. NB had the most M variation. ZB had the least P deviation. NB had the fewest vertical dimension variations but the most angulation variations.

CONCLUSIONS

Dimensional and angulation displacements of guided implant systems by in-office 3D-printed fabrication were within clinically acceptable limits: <0.1 mm in M-D, 0.5 to 1 mm in L-P, and 1 to 2 degrees in angulation. However, the vertical displacement can be as much as 2 to 3 mm. Different implant guided surgery systems have strengths and weaknesses as revealed in the dimensional and angulation implant displacements.

摘要

问题陈述

植入物引导手术系统承诺在准确性和精度方面超越了非引导手术。最近推出的办公室内立体光刻系统允许临床医生自行制作植入物手术导板。然而,不同的植入物设计和骨切开术准备方案可能会导致不同植入物系统之间的准确性和精度差异。

目的

本体外研究的目的是测量 3 种植入物系统的准确性和精度,即锥形内部植入物系统(BioHorizons)(BH)、诺贝尔替换锥形(Nobel Biocare)(NB)和锥形螺丝通风(Zimmer Biomet)(ZB),当使用办公室内制作的手术导板时。

材料和方法

使用一名上颌右侧中切牙缺失的未识别患者的锥形束计算机断层扫描(CBCT)数据集和同一患者的口腔内扫描作为模型。使用软件程序(3Shape Implant Studio)计划使用 3 种植入物系统进行植入物治疗。使用 3D 打印机(Form 2)制作 3 个植入物手术导板,并打印 30 个铸件。每个系统共放置 10 个植入物,使用制造商推荐的引导手术协议。植入物放置后,制作术后 CBCT 图像。将 CBCT 铸模和植入物图像叠加到治疗计划图像上。在唇舌和近远中平面测量植入物位置、近远中、唇舌和垂直以及植入物角度。记录每个维度的规划位移。使用方差分析和 Tukey 调整的事后两两比较来检查 3 种植入物系统的准确性和精度(α=.05)。

结果

总体植入物位移为近中侧 0.02±0.13 毫米(M)、远中侧 0.07±0.14 毫米(D)、唇侧 0.43±0.57 毫米(L)和腭侧 1.26±0.80 毫米(P);在近远中维度垂直方向上为 1.20±3.01 毫米(VMD);在唇舌维度垂直方向上为 0.69±2.03 毫米(VLP);近远中角度为 1.69±1.02 度(AMD);唇舌角度为 1.56±0.92 度(ALP)。在 M(P=.026)、P(P=.001)、VMD(P=.009)、AMD(P=.001)和 ALP(P=.001)方面发现了统计学上的显著差异(ANOVA)。ZB 在 M 和垂直维度中显示出最大的位移,在 P 角(P<.05)中显示出最小的位移,表明 M、VMD、VLP、AMD 和 ALP 之间存在统计学上的显著差异。NB 具有最大的 M 变化。ZB 具有最小的 P 偏差。NB 具有最少的垂直维度变化,但角度变化最多。

结论

办公室内 3D 打印制作的导板引导植入物系统的尺寸和角度位移在临床可接受范围内:M-D 为 0.1 毫米以内,L-P 为 0.5 至 1 毫米,角度为 1 至 2 度。然而,垂直位移可能高达 2 至 3 毫米。不同的植入物引导手术系统具有优势和劣势,这在植入物的尺寸和角度位移中得到了体现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验