Suppr超能文献

迈向用于阿片类配体基于模板对齐建模的通用μ-激动剂模板。

Toward a Universal μ-Agonist Template for Template-Based Alignment Modeling of Opioid Ligands.

作者信息

Wu Zhijun, Hruby Victor J

机构信息

ABC Resource, Plainsboro, New Jersey 08536, United States.

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85716, United States.

出版信息

ACS Omega. 2019 Oct 9;4(17):17457-17476. doi: 10.1021/acsomega.9b02244. eCollection 2019 Oct 22.

Abstract

Opioid ligands are a large group of G-protein-coupled receptor ligands possessing high structural diversity, along with complicated structure-activity relationships (SARs). To better understand their structural correlations as well as the related SARs, we developed the innovative template-based alignment modeling in our recent studies on a variety of opioid ligands. As previously reported, this approach showed promise but also with limitations, which was mainly attributed to the small size of morphine as a template. With this study, we set out to construct an artificial μ-agonist template to overcome this limitation. The newly constructed template contained a largely extended scaffold, along with a few special μ-features relevant to the μ-selectivity of opioid ligands. As demonstrated in this paper, the new template showed significantly improved efficacy in facilitating the alignment modeling of a wide variety of opioid ligands. This report comprises of two main parts. Part 1 discusses the general construction process and the structural features as well as a few typical examples of the template applications and Part 2 focuses on the template refinement and validation.

摘要

阿片类配体是一大类具有高度结构多样性的G蛋白偶联受体配体,其结构-活性关系(SARs)也很复杂。为了更好地理解它们的结构相关性以及相关的SARs,我们在最近对多种阿片类配体的研究中开发了创新的基于模板的比对建模方法。如先前报道,这种方法显示出了前景,但也存在局限性,这主要归因于吗啡作为模板的尺寸较小。在这项研究中,我们着手构建一个人工μ激动剂模板以克服这一局限性。新构建的模板包含一个大幅扩展的支架,以及一些与阿片类配体的μ选择性相关的特殊μ特征。如本文所示,新模板在促进多种阿片类配体的比对建模方面显示出显著提高的效果。本报告包括两个主要部分。第1部分讨论了模板的一般构建过程、结构特征以及一些模板应用的典型示例,第2部分重点关注模板的优化和验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验