Segredo V, Burford N T, Lameh J, Sadée W
Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, U.S.A.
J Neurochem. 1997 Jun;68(6):2395-404. doi: 10.1046/j.1471-4159.1997.68062395.x.
Internalization and recycling of G protein-coupled receptors (GPCRs), such as the mu-opioid receptor, largely depend on agonist stimulation, whereas certain other receptor types recycle constitutively, e.g., the transferrin receptor. To investigate structural domains involved in mu-opioid receptor internalization, we constructed two truncation mutants bracketing a Ser/Thr-rich domain (354ThrSerSerThrIleGluGlnGlnAsn362) unique to the C-terminus of the mu-opioid receptor (mutants Trunc354 and Trunc363). Ligand binding did not differ substantially, and G protein coupling was slightly lower for these mu-receptor constructs, in particular for Trunc363. To permit localization of the receptor by immunocytochemistry, an epitope tag was added to the N-terminus of the wild-type and mutant receptors. Both the wild-type mu-opioid receptor and Trunc363 resided largely at the plasma membrane and internalized into vesicles upon stimulation with the agonist [D-Ala2,N-Me-Phe4,Gly-ol5]-enkephalin. Internalization occurred into vesicles that contain transferrin receptors, as shown previously, as well as clathrin, but not caveolin. In contrast, even without any agonist present, Trunc354 colocalized in intracellular vesicles with clathrin and transferrin receptors, but not caveolin. On blocking internalization by hyperosmolar sucrose or acid treatment, Trunc354 translocated to the plasma membrane, indicating that the mutant internalized into clathrin-coated vesicles and recycled constitutively. Despite agonist-independent internalization of Trunc354, basal G protein coupling was not elevated, suggesting distinct mechanisms for coupling and internalization. Furthermore, a portion of the C-terminus, particularly the Ser/Thr domain, appears to suppress mu-receptor internalization, which can be overcome by agonist stimulation. These results demonstrate that a mutant GPCR can be constructed such that internalization, normally an agonist-dependent process, can occur spontaneously without concomitant G protein activation.
G蛋白偶联受体(GPCRs),如μ-阿片受体的内化和再循环在很大程度上依赖于激动剂刺激,而某些其他受体类型则持续进行再循环,例如转铁蛋白受体。为了研究参与μ-阿片受体内化的结构域,我们构建了两个截短突变体,它们包围着μ-阿片受体C末端特有的富含丝氨酸/苏氨酸的结构域(354ThrSerSerThrIleGluGlnGlnAsn362)(突变体Trunc354和Trunc363)。配体结合没有显著差异,并且这些μ-受体构建体的G蛋白偶联略有降低,特别是对于Trunc363。为了通过免疫细胞化学对受体进行定位,在野生型和突变型受体的N末端添加了一个表位标签。野生型μ-阿片受体和Trunc363主要位于质膜上,并在用激动剂[D-Ala2,N-Me-Phe4,Gly-ol5]-脑啡肽刺激后内化到囊泡中。如先前所示,内化发生在含有转铁蛋白受体以及网格蛋白但不含有小窝蛋白的囊泡中。相比之下,即使不存在任何激动剂,Trunc354也与网格蛋白和转铁蛋白受体在细胞内囊泡中共定位,但不与小窝蛋白共定位。在用高渗蔗糖或酸处理阻断内化后,Trunc354转位到质膜,表明该突变体内化到网格蛋白包被的囊泡中并持续进行再循环。尽管Trunc354的内化不依赖激动剂,但基础G蛋白偶联并未升高,表明偶联和内化的机制不同。此外,C末端的一部分,特别是丝氨酸/苏氨酸结构域,似乎抑制了μ-受体内化,而激动剂刺激可以克服这种抑制。这些结果表明,可以构建一种突变型GPCR,使得通常依赖激动剂的内化过程能够在不伴随G蛋白激活的情况下自发发生。