Suppr超能文献

塞尔夫蛋白参与了一个模糊复合体,加速了淀粉样蛋白的初始成核。

SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.

Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109.

出版信息

Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23040-23049. doi: 10.1073/pnas.1913316116. Epub 2019 Oct 28.

Abstract

The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer's and Parkinson's patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aβ40 and α-synuclein. SERF's high degree of plasticity enables it to bind various conformations of monomeric Aβ40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aβ40 and α-synuclein into single amyloid-prone conformations.

摘要

在阿尔茨海默病和帕金森病患者中,小型无序蛋白质组装成高度有序的淀粉样纤维与痴呆和神经退行性变密切相关。因此,了解淀粉样形成过程对于开发这些破坏性神经退行性疾病的有效治疗方法至关重要。最近,一种名为 SERF 的微小、高度保守且无序的蛋白质被发现可以修饰 和人类中的淀粉样形成。在这里,我们使用动力学测量和天然离子迁移质谱来表明 SERF 主要影响疾病相关蛋白 Aβ40 和 α-突触核蛋白的淀粉样形成的初始成核速率。SERF 的高可塑性使其能够结合单体 Aβ40 和 α-突触核蛋白的各种构象,形成结构多样、模糊的复合物。这种结构多样性一直持续到淀粉样形成的早期阶段。我们的结果表明,淀粉样核形成比 Aβ40 和 α-突触核蛋白与单一淀粉样倾向构象的年龄相关转化复杂得多。

相似文献

1
SERF engages in a fuzzy complex that accelerates primary nucleation of amyloid proteins.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23040-23049. doi: 10.1073/pnas.1913316116. Epub 2019 Oct 28.
4
Synergistic Amyloid Switch Triggered by Early Heterotypic Oligomerization of Intrinsically Disordered α-Synuclein and Tau.
J Mol Biol. 2018 Aug 3;430(16):2508-2520. doi: 10.1016/j.jmb.2018.04.020. Epub 2018 Apr 25.
5
SERF, a family of tiny highly conserved, highly charged proteins with enigmatic functions.
FEBS J. 2023 Sep;290(17):4150-4162. doi: 10.1111/febs.16555. Epub 2022 Jun 25.
6
Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.
Biochim Biophys Acta. 2016 Feb;1862(2):213-22. doi: 10.1016/j.bbadis.2015.11.012. Epub 2015 Dec 2.
7
Glycosaminoglycans, protein aggregation and neurodegeneration.
Curr Protein Pept Sci. 2011 May;12(3):258-68. doi: 10.2174/138920311795860188.
8
Polyphosphate: A Conserved Modifier of Amyloidogenic Processes.
Mol Cell. 2016 Sep 1;63(5):768-80. doi: 10.1016/j.molcel.2016.07.016. Epub 2016 Aug 25.
9
Intramitochondrial proteostasis is directly coupled to α-synuclein and amyloid β1-42 pathologies.
J Biol Chem. 2020 Jul 24;295(30):10138-10152. doi: 10.1074/jbc.RA119.011650. Epub 2020 May 8.
10
Oligomeric α-synuclein and β-amyloid variants as potential biomarkers for Parkinson's and Alzheimer's diseases.
Eur J Neurosci. 2016 Jan;43(1):3-16. doi: 10.1111/ejn.13056. Epub 2015 Oct 15.

引用本文的文献

1
Molecular insights into the interaction between a disordered protein and a folded RNA.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2409139121. doi: 10.1073/pnas.2409139121. Epub 2024 Nov 26.
3
Visualizing liquid-liquid phase transitions.
bioRxiv. 2024 Oct 28:2023.10.09.561572. doi: 10.1101/2023.10.09.561572.
4
Molecular insights into the interaction between a disordered protein and a folded RNA.
bioRxiv. 2024 Jun 12:2024.06.12.598678. doi: 10.1101/2024.06.12.598678.
5
Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation.
Nucleic Acids Res. 2024 May 8;52(8):4702-4722. doi: 10.1093/nar/gkae229.
6
Backbone 1H, 13C, and 15N chemical shift assignments for human SERF2.
Biomol NMR Assign. 2024 Jun;18(1):51-57. doi: 10.1007/s12104-024-10167-5. Epub 2024 Mar 11.
7
Advances in mass spectrometry to unravel the structure and function of protein condensates.
Nat Protoc. 2023 Dec;18(12):3653-3661. doi: 10.1038/s41596-023-00900-0. Epub 2023 Oct 31.
8
Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation.
bioRxiv. 2024 Mar 20:2023.09.21.558871. doi: 10.1101/2023.09.21.558871.
9
An ankyrin repeat chaperone targets toxic oligomers during amyloidogenesis.
Protein Sci. 2023 Aug;32(8):e4728. doi: 10.1002/pro.4728.
10
Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain.
Life Sci Alliance. 2023 May 2;6(7). doi: 10.26508/lsa.202201730. Print 2023 Jul.

本文引用的文献

1
Increased Aggregation Tendency of Alpha-Synuclein in a Fully Disordered Protein Complex.
J Mol Biol. 2019 Jun 28;431(14):2581-2598. doi: 10.1016/j.jmb.2019.04.031. Epub 2019 Apr 26.
2
The Amyloid Phenomenon and Its Significance in Biology and Medicine.
Cold Spring Harb Perspect Biol. 2020 Feb 3;12(2):a033878. doi: 10.1101/cshperspect.a033878.
3
CIUSuite 2: Next-Generation Software for the Analysis of Gas-Phase Protein Unfolding Data.
Anal Chem. 2019 Feb 19;91(4):3147-3155. doi: 10.1021/acs.analchem.8b05762. Epub 2019 Feb 6.
4
A Mass-Spectrometry-Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase.
Angew Chem Int Ed Engl. 2018 Dec 21;57(52):17194-17199. doi: 10.1002/anie.201812018. Epub 2018 Nov 27.
5
Native Mass Spectrometry, Ion Mobility, and Collision-Induced Unfolding for Conformational Characterization of IgG4 Monoclonal Antibodies.
Anal Chem. 2018 Aug 7;90(15):8865-8872. doi: 10.1021/acs.analchem.8b00912. Epub 2018 Jul 16.
7
Extreme disorder in an ultrahigh-affinity protein complex.
Nature. 2018 Mar 1;555(7694):61-66. doi: 10.1038/nature25762. Epub 2018 Feb 21.
8
Bri2 BRICHOS client specificity and chaperone activity are governed by assembly state.
Nat Commun. 2017 Dec 12;8(1):2081. doi: 10.1038/s41467-017-02056-4.
9
Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics.
Anal Chem. 2017 Jun 6;89(11):5669-5672. doi: 10.1021/acs.analchem.7b00112. Epub 2017 May 9.
10
Protein Misfolding Diseases.
Annu Rev Biochem. 2017 Jun 20;86:21-26. doi: 10.1146/annurev-biochem-061516-044518. Epub 2017 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验