Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.
Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23040-23049. doi: 10.1073/pnas.1913316116. Epub 2019 Oct 28.
The assembly of small disordered proteins into highly ordered amyloid fibrils in Alzheimer's and Parkinson's patients is closely associated with dementia and neurodegeneration. Understanding the process of amyloid formation is thus crucial in the development of effective treatments for these devastating neurodegenerative diseases. Recently, a tiny, highly conserved and disordered protein called SERF was discovered to modify amyloid formation in and humans. Here, we use kinetics measurements and native ion mobility-mass spectrometry to show that SERF mainly affects the rate of primary nucleation in amyloid formation for the disease-related proteins Aβ40 and α-synuclein. SERF's high degree of plasticity enables it to bind various conformations of monomeric Aβ40 and α-synuclein to form structurally diverse, fuzzy complexes. This structural diversity persists into early stages of amyloid formation. Our results suggest that amyloid nucleation is considerably more complex than age-related conversion of Aβ40 and α-synuclein into single amyloid-prone conformations.
在阿尔茨海默病和帕金森病患者中,小型无序蛋白质组装成高度有序的淀粉样纤维与痴呆和神经退行性变密切相关。因此,了解淀粉样形成过程对于开发这些破坏性神经退行性疾病的有效治疗方法至关重要。最近,一种名为 SERF 的微小、高度保守且无序的蛋白质被发现可以修饰 和人类中的淀粉样形成。在这里,我们使用动力学测量和天然离子迁移质谱来表明 SERF 主要影响疾病相关蛋白 Aβ40 和 α-突触核蛋白的淀粉样形成的初始成核速率。SERF 的高可塑性使其能够结合单体 Aβ40 和 α-突触核蛋白的各种构象,形成结构多样、模糊的复合物。这种结构多样性一直持续到淀粉样形成的早期阶段。我们的结果表明,淀粉样核形成比 Aβ40 和 α-突触核蛋白与单一淀粉样倾向构象的年龄相关转化复杂得多。