Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States.
Waters Corporation , Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom.
Anal Chem. 2017 Jun 6;89(11):5669-5672. doi: 10.1021/acs.analchem.7b00112. Epub 2017 May 9.
High mass accuracy, data-dependent acquisition is the current standard method in mass spectrometry-based peptide annotation and quantification. In high complexity samples, limited instrument scan speeds often result in under-sampling. In contrast, all-ion data-independent acquisition methods bypass precursor selection, alternating high and low collision energies to analyze product and precursor ions across wide mass ranges. Despite capturing data for all events, peptide annotation is limited by inadequate alignment algorithms or overlapping ions. Ion mobility separation can add an orthogonal analytical dimension, reducing ion interference to improve reproducibility, peak capacity, and peptide identifications to rival modern hybrid quadrupole orbitrap systems. Despite the advantages of ion mobility separation in complex proteomics analyses, there has been no quantitative measure of ion mobility resolution in a complex proteomic sample. Here, we present TWIMExtract, a data extraction tool to export defined slices of liquid chromatography/ion mobility/mass spectrometry (LC-IM-MS) data, providing a route to quantify ion mobility resolution from a commercial traveling-wave ion mobility time-of-flight mass spectrometer. Using standard traveling-wave ion mobility parameters (600 m/s, 40 V), 90% of the annotated peptides occupied just 23% of the ion mobility drift space, yet inclusion of ion mobility nearly doubled the overall peak capacity. Relative to fixed velocity traveling-wave ion mobility settings, ramping the traveling-wave velocity increased drift space occupancy, amplifying resolution by 16%, peak capacity by nearly 50%, and peptide/protein identifications by 40%. Overall, variable-velocity traveling-wave ion mobility-mass spectrometry significantly enhances proteomics analysis in all-ion fragmentation acquisition.
高质量精度、数据依赖的获取是基于质谱的肽注释和定量的当前标准方法。在高复杂度样本中,仪器扫描速度有限通常导致采样不足。相比之下,全离子数据非依赖性获取方法绕过前体选择,交替使用高和低碰撞能量来分析宽质量范围的产物和前体离子。尽管捕获了所有事件的数据,但肽注释受到不足的对齐算法或重叠离子的限制。离子淌度分离可以增加一个正交的分析维度,减少离子干扰,以提高重现性、峰容量和肽鉴定,可与现代混合四极杆轨道阱系统相媲美。尽管离子淌度分离在复杂蛋白质组学分析中具有优势,但在复杂蛋白质组样品中还没有离子淌度分辨率的定量测量。在这里,我们提出了 TWIMExtract,这是一种用于导出液相色谱/离子淌度/质谱(LC-IM-MS)数据定义片段的数据分析提取工具,提供了一种从商用行波离子淌度飞行时间质谱仪定量离子淌度分辨率的方法。使用标准的行波离子淌度参数(600 m/s,40 V),90%注释的肽仅占据离子淌度漂移空间的 23%,但包含离子淌度几乎使整体峰容量增加了一倍。与固定速度行波离子淌度设置相比,行波速度的增加增加了漂移空间占有率,分辨率提高了 16%,峰容量提高了近 50%,肽/蛋白质鉴定提高了 40%。总体而言,可变速度行波离子淌度-质谱在全离子碎裂获取中显著增强了蛋白质组学分析。