Suppr超能文献

一种用于研究瓦尔堡代谢对阿霉素基因缓冲影响的酵母表型组学模型。

A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin.

作者信息

Santos Sean M, Hartman John L

机构信息

Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA.

出版信息

Cancer Metab. 2019 Oct 23;7:9. doi: 10.1186/s40170-019-0201-3. eCollection 2019.

Abstract

BACKGROUND

The influence of the Warburg phenomenon on chemotherapy response is unknown. mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance.

METHODS

Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy.

RESULTS

Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. We analyzed human homologs of yeast genes exhibiting gene-doxorubicin interaction in cancer pharmacogenomics data to predict causality for differential gene expression associated with doxorubicin cytotoxicity in cancer cells. This analysis suggested conserved cellular responses to doxorubicin due to influences of homologous recombination, sphingolipid homeostasis, telomere tethering at nuclear periphery, actin cortical patch localization, and other gene functions.

CONCLUSIONS

Warburg status alters the genetic network required for yeast to buffer doxorubicin toxicity. Integration of yeast phenomic and cancer pharmacogenomics data suggests evolutionary conservation of gene-drug interaction networks and provides a new experimental approach to model their influence on chemotherapy response. Thus, yeast phenomic models could aid the development of precision oncology algorithms to predict efficacious cytotoxic drugs for cancer, based on genetic and metabolic profiles of individual tumors.

摘要

背景

瓦伯格效应(Warburg phenomenon)对化疗反应的影响尚不清楚。[某种物质]模拟瓦伯格效应,在有充足葡萄糖存在的情况下抑制呼吸作用。进行酵母表型组学实验,以评估瓦伯格代谢对细胞对阿霉素反应中基因 - 药物相互作用的潜在影响。分析来自酵母表型组学和癌症药物基因组学数据的同源基因,以推断基因 - 药物相互作用的进化保守性并预测治疗相关性。

方法

通过定量高通量细胞阵列表型分析(Q-HTCP)测量酵母基因敲除/敲低文库的细胞增殖表型(CPPs),在呼吸或糖酵解代谢条件下用递增浓度的阿霉素处理。阿霉素与基因的相互作用通过观察到的阿霉素处理的突变株的CPPs与基于相互作用模型预期的情况的偏差来量化。对相互作用进行递归期望最大化聚类(REMc)和基于基因本体论(GO)的分析,确定了相对于瓦伯格代谢在缓冲或促进阿霉素细胞毒性方面有差异的功能生物学模块。整合酵母表型组学和癌症药物基因组学数据,以预测因果性地影响阿霉素抗肿瘤疗效的差异基因表达。

结果

在糖酵解条件下,参与染色质组织功能的基因以及其他几个细胞过程受损的酵母对阿霉素更具抗性。因此,瓦伯格转变似乎减轻了在呼吸环境中缓冲阿霉素细胞毒性所需的细胞功能需求。我们在癌症药物基因组学数据中分析了表现出基因 - 阿霉素相互作用的酵母基因的人类同源物,以预测与癌细胞中阿霉素细胞毒性相关的差异基因表达的因果关系。该分析表明,由于同源重组、鞘脂稳态、端粒在核周边的系留、肌动蛋白皮质斑块定位和其他基因功能的影响,对阿霉素的细胞反应具有保守性。

结论

瓦伯格状态改变了酵母缓冲阿霉素毒性所需的遗传网络。酵母表型组学和癌症药物基因组学数据的整合表明基因 - 药物相互作用网络的进化保守性,并提供了一种新的实验方法来模拟它们对化疗反应的影响。因此,酵母表型组学模型可以帮助开发精准肿瘤学算法,根据个体肿瘤的遗传和代谢特征预测有效的癌症细胞毒性药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/650e/6806529/069ce724c1ae/40170_2019_201_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验