Patil Prasanna D, Ghosh Sujoy, Wasala Milinda, Lei Sidong, Vajtai Robert, Ajayan Pulickel M, Ghosh Arindam, Talapatra Saikat
Department of Physics , Southern Illinois University Carbondale , Carbondale , Illinois 62901 , United States.
Department of Materials Science and Nanoengineering , Rice University , Houston , Texas 77005 , United States.
ACS Nano. 2019 Nov 26;13(11):13413-13420. doi: 10.1021/acsnano.9b06846. Epub 2019 Nov 5.
The existence of an exquisite phenomenon such as a metal-insulator transition (MIT) in two-dimensional (2D) systems, where completely different electronic functionalities in the same system can emerge simply by regulating parameters such as charge carrier density in them, is noteworthy. Such tunability in material properties can lead to several applications where precise tuning of function specific properties are desirable. Here, we report on our observation on the occurrence of MIT in the 2D material system of copper indium selenide (CuInSe). Clear evidence of the metallic nature of conductivity (σ) under the influence of electrostatic doping the gate, which crosses over to an insulating phase upon lowering the temperature, was observed by investigating the temperature and gate dependence of σ in CuInSe field-effect transistor devices. At higher charge carrier densities ( > 10 cm), we found that σ ∼ () with α ∼ 2, which suggests the presence of bare Coulomb impurity scattering within the studied range of temperature (280 K > > 20 K). Our analysis of the conductivity data following the principles of percolation theory of transition where σ ∼ ( - ) show that the critical percolation exponent δ() has average values ∼1.57 ± 0.27 and 1.02 ± 0.35 within the measured temperature range for the two devices and it is close to the 2D percolation exponent value of 1.33. We believe that the 2D MIT seen in our system is due to the charge density inhomogeneity caused by electrostatic doping and unscreened charge impurity scattering that leads to a percolation driven transition. The findings reported here for CuInSe system provide a different material platform to investigate MIT in 2D and are crucial in order to understand the fundamental basis of electronic interactions and charge-transport phenomenon in other unexplored 2D electron systems.
二维(2D)系统中存在诸如金属 - 绝缘体转变(MIT)这样精妙的现象,即在同一系统中,仅通过调节诸如其中的载流子密度等参数,就能出现完全不同的电子功能,这一点值得关注。材料特性的这种可调性能够带来多种需要对特定功能特性进行精确调节的应用。在此,我们报告关于在铜铟硒(CuInSe)二维材料系统中发生MIT的观察结果。通过研究CuInSe场效应晶体管器件中电导率(σ)的温度和栅极依赖性,观察到了在静电掺杂(栅极)影响下电导率具有金属特性的明确证据,当温度降低时,其转变为绝缘相。在较高载流子密度(>10 cm)下,我们发现σ ∼ (),其中α ∼ 2,这表明在所研究的温度范围(280 K > > 20 K)内存在裸库仑杂质散射。我们依据转变的渗流理论原理对电导率数据进行分析,其中σ ∼ ( - ),结果表明在两个器件的测量温度范围内,临界渗流指数δ()的平均值约为1.57 ± 0.27和1.02 ± 0.35,且接近二维渗流指数值1.33。我们认为在我们的系统中观察到的二维MIT是由于静电掺杂和未屏蔽的电荷杂质散射导致的电荷密度不均匀性,进而引发了渗流驱动的转变。此处报道的关于CuInSe系统的研究结果为研究二维MIT提供了一个不同的材料平台,对于理解其他未探索的二维电子系统中电子相互作用和电荷传输现象的基本原理至关重要。