Hoque Md Anamul, Polyakov Alexander Yu, Munkhbat Battulga, Iordanidou Konstantina, Agrawal Abhay V, Yankovich Andrew B, Mallik Sameer K, Zhao Bing, Mitra Richa, Kalaboukhov Alexei, Olsson Eva, Kubatkin Sergey, Wiktor Julia, Avila Samuel Lara, Shegai Timur O, Dash Saroj P
Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
Nano Lett. 2025 Feb 5;25(5):1750-1757. doi: 10.1021/acs.nanolett.4c01076. Epub 2025 Jan 23.
Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS) nanoribbons as small as sub-10 nm in width. The WS nanoribbon junctions having different widths display diodic current-voltage characteristics, providing a way to create and tune nanoscale device properties by controlling the size of the structures. The transport properties of the nanoribbon FETs are primarily governed by narrow channel effects, where the mobility in the narrow channels is limited by edge scattering. Our findings on nanoribbon devices hold potential for developing future-generation nanometer-scale van der Waals semiconductor-based devices and circuits.
半导体过渡金属二硫属化物(TMDs)因其在开发高性能、节能和纳米级电子器件方面的潜力而备受关注。尽管在缩小TMD场效应晶体管(FETs)的栅极和沟道长度方面取得了显著进展,但制造亚30纳米窄沟道以及具有原子级边缘控制的器件仍然面临挑战。在此,我们展示了一种晶体学控制的纳米结构化技术,用于制造宽度小至亚10纳米的超窄二硫化钨(WS)纳米带。具有不同宽度的WS纳米带结表现出二极管电流 - 电压特性,这为通过控制结构尺寸来创建和调节纳米级器件特性提供了一种方法。纳米带FETs的输运特性主要受窄沟道效应支配,其中窄沟道中的迁移率受边缘散射限制。我们在纳米带器件上的发现为开发下一代基于范德华半导体的纳米级器件和电路具有潜力。