Univ Rennes, CHU Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France.
PLoS One. 2019 Oct 29;14(10):e0223785. doi: 10.1371/journal.pone.0223785. eCollection 2019.
Robust, real-time event detection from physiological signals acquired during long-term ambulatory monitoring still represents a major challenge for highly-artifacted signals. In this paper, we propose an original and generic multi-feature probabilistic detector (MFPD) and apply it to real-time QRS complex detection under noisy conditions. The MFPD method calculates a binary Bayesian probability for each derived feature and makes a centralized fusion, using the Kullback-Leibler divergence. The method is evaluated on two ECG databases: 1) the MIT-BIH arrhythmia database from Physionet containing clean ECG signals, 2) a benchmark noisy database created by adding noise recordings of the MIT-BIH noise stress test database, also from Physionet, to the MIT-BIH arrhythmia database. Results are compared with a well-known wavelet-based detector, and two recently published detectors: one based on spatiotemporal characteristic of the QRS complex and the second, as the MFDP, based on feature calculations from the University of New South Wales detector (UNSW). For both benchmark Physionet databases, the proposed MFPD method achieves the lowest standard deviation in sensitivity and positive predictivity (+P) despite its online algorithm architecture. While the statistics are comparable for low-to mildly artifactual ECG signals, the MFPD outperforms reference methods for artifacted ECG with low SNR levels reaching 87.48 ± 14.21% in sensitivity and 89.39 ± 14.67% in +P as compared to 88.30 ± 17.66% and 86.06 ± 19.67% respectively from UNSW, the best performing reference method. With demonstrations on the extensively studied QRS detection problem, we consider that the proposed generic structure of the multi-feature probabilistic detector should offer promising perspectives for long-term monitoring applications for highly-artifacted signals.
从长期动态监测中获取的生理信号中稳健、实时的事件检测仍然是高度伪迹信号的主要挑战。在本文中,我们提出了一种原始的、通用的多特征概率检测器(MFPD),并将其应用于噪声条件下的实时 QRS 复合波检测。MFPD 方法为每个派生特征计算二进制贝叶斯概率,并使用 Kullback-Leibler 散度进行集中融合。该方法在两个 ECG 数据库上进行了评估:1)Physionet 中的 MIT-BIH 心律失常数据库,包含干净的 ECG 信号,2)一个基准噪声数据库,是通过将 Physionet 中的 MIT-BIH 噪声应激测试数据库的噪声记录添加到 MIT-BIH 心律失常数据库中创建的。结果与一种知名的基于小波的检测器以及两种最近发表的检测器进行了比较:一种基于 QRS 复合波的时空特征,另一种基于新南威尔士大学检测器(UNSW)的特征计算,即 MFDP。对于这两个基准 Physionet 数据库,尽管具有在线算法结构,但与其他两种基于小波的检测器和基于特征计算的检测器相比,所提出的 MFPD 方法在灵敏度和正预测值(+P)的标准偏差方面具有最低的标准偏差。尽管对于低至轻度伪迹 ECG 信号的统计数据是可比的,但对于 SNR 水平较低的伪迹 ECG,MFPD 的性能优于参考方法,其灵敏度分别达到 87.48±14.21%和+P 达到 89.39±14.67%,而 UNSW 的灵敏度分别为 88.30±17.66%和+P 为 86.06±19.67%。通过对广泛研究的 QRS 检测问题的演示,我们认为所提出的多特征概率检测器的通用结构应该为高度伪迹信号的长期监测应用提供有前景的视角。