Suppr超能文献

基于优化知识的快速 QRS 检测方法:在 11 个标准 ECG 数据库上的评估。

Fast QRS detection with an optimized knowledge-based method: evaluation on 11 standard ECG databases.

机构信息

Department of Computing Science, University of Alberta, Edmonton, Canada.

出版信息

PLoS One. 2013 Sep 16;8(9):e73557. doi: 10.1371/journal.pone.0073557. eCollection 2013.

Abstract

The current state-of-the-art in automatic QRS detection methods show high robustness and almost negligible error rates. In return, the methods are usually based on machine-learning approaches that require sufficient computational resources. However, simple-fast methods can also achieve high detection rates. There is a need to develop numerically efficient algorithms to accommodate the new trend towards battery-driven ECG devices and to analyze long-term recorded signals in a time-efficient manner. A typical QRS detection method has been reduced to a basic approach consisting of two moving averages that are calibrated by a knowledge base using only two parameters. In contrast to high-accuracy methods, the proposed method can be easily implemented in a digital filter design.

摘要

目前,自动 QRS 检测方法的最新技术显示出了很高的鲁棒性和几乎可以忽略不计的错误率。作为回报,这些方法通常基于需要足够计算资源的机器学习方法。然而,简单快速的方法也可以实现高检测率。需要开发数值效率高的算法,以适应新的趋势,即使用电池驱动的 ECG 设备,并以高效的方式分析长期记录的信号。一种典型的 QRS 检测方法已经简化为一种基本方法,该方法仅使用两个参数通过知识库对两个移动平均值进行校准。与高精度方法相比,所提出的方法可以很容易地在数字滤波器设计中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7459/3774726/24ac7a368f74/pone.0073557.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验