Suppr超能文献

检测参与度和训练任务难度应用于康复机器人的多传感器系统。

Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.

机构信息

Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China.

Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.

出版信息

Sensors (Basel). 2019 Oct 28;19(21):4681. doi: 10.3390/s19214681.

Abstract

In the process of rehabilitation training for stroke patients, the rehabilitation effect is positively affected by how much physical activity the patients take part in. Most of the signals used to measure the patients' participation are EMG signals or oxygen consumption, which increase the cost and the complexity of the robotic device. In this work, we design a multi-sensor system robot with torque and six-dimensional force sensors to gauge the patients' participation in training. By establishing the static equation of the mechanical leg, the man-machine interaction force of the patient can be accurately extracted. Using the impedance model, the auxiliary force training mode is established, and the difficulty of the target task is changed by adjusting the K value of auxiliary force. Participation models with three intensities were developed offline using support vector machines, for which the C and σ parameters are optimized by the hybrid quantum particle swarm optimization and support vector machines (Hybrid QPSO-SVM) algorithm. An experimental statistical analysis was conducted on ten volunteers' motion representation in different training tasks, which are divided into three stages: over-challenge, challenge, less challenge, by choosing characteristic quantities with significant differences among the various difficulty task stages, as a training set for the support vector machines (SVM). Experimental results from 12 volunteers, with tasks conducted on the lower limb rehabilitation robot LLR-II show that the rehabilitation robot can accurately predict patient participation and training task difficulty. The prediction accuracy reflects the superiority of the Hybrid QPSO-SVM algorithm.

摘要

在脑卒中患者的康复训练过程中,患者参与的身体活动量对康复效果有积极影响。用于测量患者参与度的信号大多是肌电图信号或耗氧量,这增加了机器人设备的成本和复杂性。在这项工作中,我们设计了一种带有扭矩和六维力传感器的多传感器系统机器人,以衡量患者在训练中的参与度。通过建立机械腿的静态方程,可以准确提取患者的人机交互力。利用阻抗模型,建立辅助力训练模式,通过调整辅助力的 K 值来改变目标任务的难度。使用支持向量机(Support Vector Machine,SVM)离线开发了三种强度的参与模型,其中 C 和 σ 参数通过混合量子粒子群优化和支持向量机(Hybrid Quantum Particle Swarm Optimization and Support Vector Machine,Hybrid QPSO-SVM)算法进行优化。通过选择在不同难度任务阶段之间存在显著差异的特征量,对十位志愿者在不同训练任务中的运动表现进行了实验性统计分析,将其分为三个阶段:过度挑战、挑战和较少挑战,作为支持向量机(Support Vector Machine,SVM)的训练集。对 12 名志愿者在下肢康复机器人 LLR-II 上进行的任务进行了实验结果表明,康复机器人可以准确预测患者的参与度和训练任务的难度。预测准确性反映了 Hybrid QPSO-SVM 算法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验