Suppr超能文献

AntiBac-Pred:一个用于预测化合物抗菌活性的网络应用程序。

AntiBac-Pred: A Web Application for Predicting Antibacterial Activity of Chemical Compounds.

机构信息

Department for Bioinformatics , Institute of Biomedical Chemistry (IBMC) , Moscow 119121 , Russia.

Department of Bioinformatics , Pirogov Russian National Research Medical University , Moscow 117997 , Russia.

出版信息

J Chem Inf Model. 2019 Nov 25;59(11):4513-4518. doi: 10.1021/acs.jcim.9b00436. Epub 2019 Nov 12.

Abstract

Discovery of new antibacterial agents is a never-ending task of medicinal chemistry. Every new drug brings significant improvement to patients with bacterial infections, but prolonged usage of antibacterials leads to the emergence of resistant strains. Therefore, novel active structures with new modes of action are required. We describe a web application called AntiBac-Pred aimed to help users in the rational selection of the chemical compounds for experimental studies of antibacterial activity. This application is developed using antibacterial activity data available in ChEMBL and PASS software. It allows users to classify chemical structures of interest into growth inhibitors or noninhibitors of 353 different bacteria strains, including both resistant and nonresistant ones.

摘要

发现新的抗菌剂是药物化学一项永无止境的任务。每一种新的药物都给患有细菌感染的患者带来了显著的改善,但抗菌药物的长期使用导致了耐药菌株的出现。因此,需要具有新作用模式的新型活性结构。我们描述了一个名为 AntiBac-Pred 的网络应用程序,旨在帮助用户合理选择用于抗菌活性实验研究的化合物。该应用程序是使用 ChEMBL 和 PASS 软件中提供的抗菌活性数据开发的。它允许用户将感兴趣的化学结构分类为 353 种不同细菌株的生长抑制剂或非抑制剂,包括耐药菌和非耐药菌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验