Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil.
Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil.
J Chem Inf Model. 2024 Mar 25;64(6):1932-1944. doi: 10.1021/acs.jcim.4c00087. Epub 2024 Mar 4.
The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistant(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.
过去,计算机辅助药物发现 (CADD) 方法的应用使得新的抗菌治疗剂的发现成为可能。耐甲氧西林金黄色葡萄球菌 (MRSA) 菌株的高流行率促使这种病原体成为药物开发的高优先级病原体。从这个意义上说,现代 CADD 技术可以成为寻找新抗菌剂的有价值的工具。我们采用了一系列机器学习 (ML) 技术的组合,选择和评估了对甲氧西林敏感 (MSSA) 和 MRSA 菌株具有抗菌活性的潜在化合物。在本研究中,我们描述了六种化合物对 MSSA 和 MRSA 参考(美国典型培养物保藏中心 (ATCC))菌株以及两种临床 MRSA 菌株的抗菌活性。这些化合物对评估的不同细菌菌株的最小抑菌浓度 (MIC) 在 12.5 至 200 μM 范围内。我们的结果构成了相关的经过验证的 ML 工作流程模型,可用于独特地筛选新型 MRSA 抗生素。