Suppr超能文献

利用不同水深梯度下造礁石珊瑚的物种丰富度检验生物多样性理论。

Testing biodiversity theory using species richness of reef-building corals across a depth gradient.

机构信息

Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.

AIMS@JCU, Australian Institute of Marine Science, PMB 3, Townsville MC, Queensland 4810, Australia.

出版信息

Biol Lett. 2019 Oct 31;15(10):20190493. doi: 10.1098/rsbl.2019.0493. Epub 2019 Oct 30.

Abstract

Natural environmental gradients encompass systematic variation in abiotic factors that can be exploited to test competing explanations of biodiversity patterns. The (SE) hypothesis attempts to explain species richness gradients as a function of energy availability. However, limited empirical support for SE is often attributed to idiosyncratic, local-scale processes distorting the underlying SE relationship. Meanwhile, studies are also often confounded by factors such as sampling biases, dispersal boundaries and unclear definitions of energy availability. Here, we used spatially structured observations of 8460 colonies of photo-symbiotic reef-building corals and a null-model to test whether energy can explain observed coral species richness over depth. Species richness was left-skewed, hump-shaped and unrelated to energy availability. While local-scale processes were evident, their influence on species richness was insufficient to reconcile observations with model predictions. Therefore, energy availability, either in isolation or in combination with local deterministic processes, was unable to explain coral species richness across depth. Our results demonstrate that local-scale processes do not necessarily explain deviations in species richness from theoretical models, and that the use of idiosyncratic small-scale factors to explain large-scale ecological patterns requires the utmost caution.

摘要

自然环境梯度包含非生物因素的系统变化,可以利用这些变化来检验生物多样性模式的竞争解释。(SE)假说试图将物种丰富度梯度解释为能量供应的函数。然而,SE 的有限经验支持通常归因于特有的、局部尺度的过程,这些过程扭曲了潜在的 SE 关系。同时,研究还经常受到采样偏差、扩散边界和能量供应不明确等因素的混淆。在这里,我们使用空间结构观测到的 8460 个共生藻类珊瑚殖民地和一个零模型来检验能量是否可以解释观测到的珊瑚物种丰富度随深度的变化。物种丰富度呈左偏态、驼峰状,与能量供应无关。虽然局部尺度的过程是明显的,但它们对物种丰富度的影响不足以使观测结果与模型预测相协调。因此,能量供应(无论是单独还是与局部确定性过程结合)都无法解释珊瑚物种丰富度随深度的变化。我们的结果表明,局部尺度的过程不一定能解释物种丰富度偏离理论模型的情况,而且利用特有的小尺度因素来解释大尺度的生态模式需要极其谨慎。

相似文献

1
Testing biodiversity theory using species richness of reef-building corals across a depth gradient.
Biol Lett. 2019 Oct 31;15(10):20190493. doi: 10.1098/rsbl.2019.0493. Epub 2019 Oct 30.
2
Photosynthetic usable energy explains vertical patterns of biodiversity in zooxanthellate corals.
Sci Rep. 2022 Dec 2;12(1):20821. doi: 10.1038/s41598-022-25094-5.
3
Reef flattening effects on total richness and species responses in the Caribbean.
J Anim Ecol. 2015 Nov;84(6):1678-89. doi: 10.1111/1365-2656.12429. Epub 2015 Sep 6.
4
A unified model explains commonness and rarity on coral reefs.
Ecol Lett. 2017 Apr;20(4):477-486. doi: 10.1111/ele.12751. Epub 2017 Mar 2.
5
The Point Count Transect Method for Estimates of Biodiversity on Coral Reefs: Improving the Sampling of Rare Species.
PLoS One. 2016 Mar 24;11(3):e0152335. doi: 10.1371/journal.pone.0152335. eCollection 2016.
6
Coral communities are regionally enriched along an oceanic biodiversity gradient.
Nature. 2004 Jun 24;429(6994):867-70. doi: 10.1038/nature02685. Epub 2004 Jun 16.
7
Spatial scale, abundance and the species-energy relationship in British birds.
J Anim Ecol. 2008 Mar;77(2):395-405. doi: 10.1111/j.1365-2656.2007.01332.x. Epub 2007 Nov 13.
8
Patterns and processes in reef fish diversity.
Nature. 2003 Feb 27;421(6926):933-6. doi: 10.1038/nature01393.
9
Global reef fish richness gradients emerge from divergent and scale-dependent component changes.
Proc Biol Sci. 2017 Nov 29;284(1867). doi: 10.1098/rspb.2017.0947.
10
The origin and evolution of coral species richness in a marine biodiversity hotspot.
Evolution. 2018 Feb;72(2):288-302. doi: 10.1111/evo.13402. Epub 2017 Dec 12.

引用本文的文献

本文引用的文献

1
Better Model Transfers Require Knowledge of Mechanisms.
Trends Ecol Evol. 2019 Jun;34(6):489-490. doi: 10.1016/j.tree.2019.04.006. Epub 2019 May 2.
2
Ecological and evolutionary drivers of the elevational gradient of diversity.
Ecol Lett. 2018 Jul;21(7):1022-1032. doi: 10.1111/ele.12967. Epub 2018 May 2.
3
Negligible effect of competition on coral colony growth.
Ecology. 2018 Jun;99(6):1347-1356. doi: 10.1002/ecy.2222. Epub 2018 May 8.
4
Process, Mechanism, and Modeling in Macroecology.
Trends Ecol Evol. 2017 Nov;32(11):835-844. doi: 10.1016/j.tree.2017.08.011. Epub 2017 Sep 14.
5
The Point Count Transect Method for Estimates of Biodiversity on Coral Reefs: Improving the Sampling of Rare Species.
PLoS One. 2016 Mar 24;11(3):e0152335. doi: 10.1371/journal.pone.0152335. eCollection 2016.
6
Geomorphic controls on elevational gradients of species richness.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1737-42. doi: 10.1073/pnas.1518922113. Epub 2016 Feb 1.
8
Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species.
R Soc Open Sci. 2015 Feb 11;2(2):140297. doi: 10.1098/rsos.140297. eCollection 2015 Feb.
9
Mechanical vulnerability explains size-dependent mortality of reef corals.
Ecol Lett. 2014 Aug;17(8):1008-15. doi: 10.1111/ele.12306. Epub 2014 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验