Department of Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47, 6700 AA, Wageningen, The Netherlands.
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterhurerstrasse 190, 8057 Zurich, Switzerland.
J R Soc Interface. 2019 Oct 31;16(159):20190629. doi: 10.1098/rsif.2019.0629. Epub 2019 Oct 30.
The dynamics of complex systems, such as ecosystems, financial markets and the human brain, emerge from the interactions of numerous components. We often lack the knowledge to build reliable models for the behaviour of such network systems. This makes it difficult to predict potential instabilities. We show that one could use the natural fluctuations in multivariate time series to reveal network regions with particularly slow dynamics. The multidimensional slowness points to the direction of minimal resilience, in the sense that simultaneous perturbations on this set of nodes will take longest to recover. We compare an autocorrelation-based method with a variance-based method for different time-series lengths, data resolution and different noise regimes. We show that the autocorrelation-based method is less robust for short time series or time series with a low resolution but more robust for varying noise levels. This novel approach may help to identify unstable regions of multivariate systems or to distinguish safe from unsafe perturbations.
复杂系统的动态,如生态系统、金融市场和人脑,是由众多组件的相互作用产生的。我们常常缺乏知识来为这类网络系统的行为建立可靠的模型。这使得预测潜在的不稳定性变得困难。我们表明,人们可以利用多元时间序列中的自然波动来揭示具有特别缓慢动态的网络区域。多维缓慢性指向最小弹性的方向,因为在这个节点集上同时进行的扰动需要最长的时间才能恢复。我们比较了基于自相关的方法和基于方差的方法,用于不同的时间序列长度、数据分辨率和不同的噪声环境。我们表明,基于自相关的方法对于短时间序列或低分辨率的时间序列不太稳健,但对于变化的噪声水平更稳健。这种新方法可能有助于识别多元系统的不稳定区域,或区分安全和不安全的扰动。