Suppr超能文献

评估韧性损失的多元指标的表现。

Evaluating the performance of multivariate indicators of resilience loss.

机构信息

Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands.

Computational Science, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2021 Apr 28;11(1):9148. doi: 10.1038/s41598-021-87839-y.

Abstract

Various complex systems, such as the climate, ecosystems, and physical and mental health can show large shifts in response to small changes in their environment. These 'tipping points' are notoriously hard to predict based on trends. However, in the past 20 years several indicators pointing to a loss of resilience have been developed. These indicators use fluctuations in time series to detect critical slowing down preceding a tipping point. Most of the existing indicators are based on models of one-dimensional systems. However, complex systems generally consist of multiple interacting entities. Moreover, because of technological developments and wearables, multivariate time series are becoming increasingly available in different fields of science. In order to apply the framework of resilience indicators to multivariate time series, various extensions have been proposed. Not all multivariate indicators have been tested for the same types of systems and therefore a systematic comparison between the methods is lacking. Here, we evaluate the performance of the different multivariate indicators of resilience loss in different scenarios. We show that there is not one method outperforming the others. Instead, which method is best to use depends on the type of scenario the system is subject to. We propose a set of guidelines to help future users choose which multivariate indicator of resilience is best to use for their particular system.

摘要

各种复杂系统,如气候、生态系统以及身心健康,在其环境发生微小变化时可能会发生巨大变化。这些“临界点”很难根据趋势预测。然而,在过去的 20 年中,已经开发出了几种指向弹性丧失的指标。这些指标使用时间序列中的波动来检测临界点之前的关键减速。现有的大多数指标都是基于一维系统的模型。然而,复杂系统通常由多个相互作用的实体组成。此外,由于技术发展和可穿戴设备的出现,不同科学领域中越来越多地出现了多元时间序列。为了将弹性指标框架应用于多元时间序列,已经提出了各种扩展。并非所有多元指标都针对相同类型的系统进行了测试,因此缺乏对这些方法的系统比较。在这里,我们评估了弹性损失的不同多元指标在不同场景下的性能。我们表明,没有一种方法比其他方法表现更好。相反,哪种方法最适合使用取决于系统所面临的情景类型。我们提出了一组准则,以帮助未来的用户选择最适合其特定系统的多元弹性指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc2d/8080839/3cb08a36c2de/41598_2021_87839_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验