Suppr超能文献

用于相关大规模多重检验的贝叶斯隐马尔可夫模型

Bayesian Hidden Markov Models for Dependent Large-Scale Multiple Testing.

作者信息

Wang Xia, Shojaie Ali, Zou Jian

机构信息

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221, U.S.A.

Department of Biostatistics, University of Washington, Seattle, Washington 98195, U.S.A.

出版信息

Comput Stat Data Anal. 2019 Aug;136:123-136. doi: 10.1016/j.csda.2019.01.009. Epub 2019 Jan 29.

Abstract

An optimal and flexible multiple hypotheses testing procedure is constructed for dependent data based on Bayesian techniques, aiming at handling two challenges, namely dependence structure and non-null distribution specification. Ignoring dependence among hypotheses tests may lead to loss of efficiency and bias in decision. Misspecification in the non-null distribution, on the other hand, can result in both false positive and false negative errors. Hidden Markov models are used to accommodate the dependence structure among the tests. Dirichlet mixture process prior is applied on the non-null distribution to overcome the potential pitfalls in distribution misspecification. The testing algorithm based on Bayesian techniques optimizes the false negative rate (FNR) while controlling the false discovery rate (FDR). The procedure is applied to pointwise and clusterwise analysis. Its performance is compared with existing approaches using both simulated and real data examples.

摘要

基于贝叶斯技术构建了一种针对相关数据的最优且灵活的多重假设检验程序,旨在应对两个挑战,即依赖结构和非零分布规范。忽略假设检验之间的依赖性可能会导致决策效率损失和偏差。另一方面,非零分布的错误设定可能会导致假阳性和假阴性错误。使用隐马尔可夫模型来适应检验之间的依赖结构。狄利克雷混合过程先验应用于非零分布,以克服分布错误设定中的潜在陷阱。基于贝叶斯技术的检验算法在控制错误发现率(FDR)的同时优化了假阴性率(FNR)。该程序应用于逐点分析和聚类分析。使用模拟和实际数据示例将其性能与现有方法进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/780f/6818740/369578a5c9da/nihms-1521743-f0001.jpg

相似文献

1
Bayesian Hidden Markov Models for Dependent Large-Scale Multiple Testing.用于相关大规模多重检验的贝叶斯隐马尔可夫模型
Comput Stat Data Anal. 2019 Aug;136:123-136. doi: 10.1016/j.csda.2019.01.009. Epub 2019 Jan 29.

本文引用的文献

3
False Discovery Control in Large-Scale Spatial Multiple Testing.大规模空间多重检验中的错误发现控制
J R Stat Soc Series B Stat Methodol. 2015 Jan 1;77(1):59-83. doi: 10.1111/rssb.12064.
8
High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis.用于eQTL数据分析的高维异方差回归
Biometrics. 2012 Mar;68(1):316-326. doi: 10.1111/j.1541-0420.2011.01652.x. Epub 2011 Aug 12.
10
A Bayesian Discovery Procedure.一种贝叶斯发现程序。
J R Stat Soc Series B Stat Methodol. 2009 Nov 1;71(5):905-925. doi: 10.1111/j.1467-9868.2009.00714.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验