Suppr超能文献

随机效应模型中贝叶斯多重假设检验的尖峰狄利克雷过程先验

Spiked Dirichlet Process Prior for Bayesian Multiple Hypothesis Testing in Random Effects Models.

作者信息

Kim Sinae, Dahl David B, Vannucci Marina

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI,

出版信息

Bayesian Anal. 2009;4(4):707-732. doi: 10.1214/09-BA426.

Abstract

We propose a Bayesian method for multiple hypothesis testing in random effects models that uses Dirichlet process (DP) priors for a nonparametric treatment of the random effects distribution. We consider a general model formulation which accommodates a variety of multiple treatment conditions. A key feature of our method is the use of a product of spiked distributions, i.e., mixtures of a point-mass and continuous distributions, as the centering distribution for the DP prior. Adopting these spiked centering priors readily accommodates sharp null hypotheses and allows for the estimation of the posterior probabilities of such hypotheses. Dirichlet process mixture models naturally borrow information across objects through model-based clustering while inference on single hypotheses averages over clustering uncertainty. We demonstrate via a simulation study that our method yields increased sensitivity in multiple hypothesis testing and produces a lower proportion of false discoveries than other competitive methods. While our modeling framework is general, here we present an application in the context of gene expression from microarray experiments. In our application, the modeling framework allows simultaneous inference on the parameters governing differential expression and inference on the clustering of genes. We use experimental data on the transcriptional response to oxidative stress in mouse heart muscle and compare the results from our procedure with existing nonparametric Bayesian methods that provide only a ranking of the genes by their evidence for differential expression.

摘要

我们提出了一种用于随机效应模型中多重假设检验的贝叶斯方法,该方法使用狄利克雷过程(DP)先验对随机效应分布进行非参数处理。我们考虑一种通用的模型公式,它适用于各种多重处理条件。我们方法的一个关键特征是使用尖峰分布的乘积,即点质量分布和连续分布的混合,作为DP先验的中心分布。采用这些尖峰中心先验很容易适应尖锐的原假设,并允许估计此类假设的后验概率。狄利克雷过程混合模型通过基于模型的聚类自然地在对象之间借用信息,而对单个假设的推断则对聚类不确定性进行平均。我们通过模拟研究表明,与其他竞争方法相比,我们的方法在多重假设检验中具有更高的灵敏度,并且产生的错误发现比例更低。虽然我们的建模框架是通用的,但在此我们展示了在微阵列实验的基因表达背景下的一个应用。在我们的应用中,建模框架允许对控制差异表达的参数进行同时推断以及对基因聚类进行推断。我们使用小鼠心肌氧化应激转录反应的实验数据,并将我们程序的结果与现有的非参数贝叶斯方法进行比较,后者仅根据基因差异表达的证据对基因进行排名。

相似文献

6
Bayesian nonparametric analysis of restricted mean survival time.贝叶斯非参数分析受限平均生存时间。
Biometrics. 2023 Jun;79(2):1383-1396. doi: 10.1111/biom.13622. Epub 2022 Feb 2.
7
Generalized species sampling priors with latent Beta reinforcements.具有潜在贝塔增强的广义物种抽样先验。
J Am Stat Assoc. 2014 Dec 1;109(508):1466-1480. doi: 10.1080/01621459.2014.950735.
10
Bayesian nonparametric inference on stochastic ordering.关于随机序的贝叶斯非参数推断。
Biometrika. 2008 Dec;95(4):859-874. doi: 10.1093/biomet/asn043. Epub 2008 Nov 3.

引用本文的文献

7
Adjusting background noise in cluster analyses of longitudinal data.在纵向数据的聚类分析中调整背景噪声。
Comput Stat Data Anal. 2017 May;109:93-104. doi: 10.1016/j.csda.2016.11.009. Epub 2016 Nov 27.

本文引用的文献

2
Bayesian methods for highly correlated exposure data.用于高度相关暴露数据的贝叶斯方法。
Epidemiology. 2007 Mar;18(2):199-207. doi: 10.1097/01.ede.0000256320.30737.c0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验