Shvydka S, Sarabeev V, Estruch V D, Cadarso-Suárez C
Department of Mathematics, Zaporizhzhia National University, Zhukovskogo 66, 69063 Zaporizhzhia, Ukraine.
Department of Biology, Zaporizhzhia National University, Zhukovskogo 66, 69063 Zaporizhzhia, Ukraine.
Helminthologia. 2018 Jan 27;55(1):52-59. doi: 10.1515/helm-2017-0054. eCollection 2018 Mar.
To reach ethically and scientifically valid mean abundance values in parasitological and epidemiological studies this paper considers analytic and simulation approaches for sample size determination. The sample size estimation was carried out by applying mathematical formula with predetermined precision level and parameter of the negative binomial distribution estimated from the empirical data. A simulation approach to optimum sample size determination aimed at the estimation of true value of the mean abundance and its confidence interval () was based on the Bag of Little Bootstraps (BLB). The abundance of two species of monogenean parasites and from across the Azov-Black Seas localities were subjected to the analysis. The dispersion pattern of both helminth species could be characterized as a highly aggregated distribution with the variance being substantially larger than the mean abundance. The holistic approach applied here offers a wide range of appropriate methods in searching for the optimum sample size and the understanding about the expected precision level of the mean. Given the superior performance of the BLB relative to formulae with its few assumptions, the bootstrap procedure is the preferred method. Two important assessments were performed in the present study: i) based on s width a reasonable precision level for the mean abundance in parasitological surveys of spp. could be chosen between 0.8 and 0.5 with 1.6 and 1x mean of the s width, and ii) the sample size equal 80 or more host individuals allows accurate and precise estimation of mean abundance. Meanwhile for the host sample size in range between 25 and 40 individuals, the median estimates showed minimal bias but the sampling distribution skewed to the low values; a sample size of 10 host individuals yielded to unreliable estimates.
为了在寄生虫学和流行病学研究中获得符合伦理和科学有效的平均丰度值,本文考虑了用于样本量确定的分析方法和模拟方法。样本量估计是通过应用具有预定精度水平的数学公式以及根据经验数据估计的负二项分布参数来进行的。一种用于确定最佳样本量的模拟方法,旨在估计平均丰度的真实值及其置信区间(),该方法基于小自助法袋(BLB)。对来自亚速海 - 黑海地区各地的两种单殖吸虫寄生虫和的丰度进行了分析。两种蠕虫物种的分布模式都可被表征为高度聚集分布,方差远大于平均丰度。这里应用的整体方法在寻找最佳样本量以及理解平均丰度的预期精度水平方面提供了广泛的合适方法。鉴于BLB相对于公式具有较少假设的优越性能,自助程序是首选方法。本研究进行了两项重要评估:i)基于宽度,在寄生虫学调查中,对于 spp. 的平均丰度,可以在0.8和0.5之间选择合理的精度水平,并分别乘以宽度的1.6倍和1倍;ii)样本量等于80个或更多宿主个体时,可以准确且精确地估计平均丰度。同时,对于宿主样本量在25至40个个体之间的情况,中位数估计显示偏差最小,但抽样分布向低值倾斜;10个宿主个体的样本量会产生不可靠的估计。