Suppr超能文献

使用-最短路径算法对……代谢途径进行计算识别 。 (你提供的原文中“using the -Shortest Path Algorithm”部分似乎有缺失信息,不太完整准确,但大致翻译如上。)

Computational Identification of Metabolic Pathways of using the -Shortest Path Algorithm.

作者信息

Oyelade Jelili, Isewon Itunuoluwa, Aromolaran Olufemi, Uwoghiren Efosa, Dokunmu Titilope, Rotimi Solomon, Aworunse Oluwadurotimi, Obembe Olawole, Adebiyi Ezekiel

机构信息

Department of Computer & Information Sciences, Covenant University, Ota, Nigeria.

Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria.

出版信息

Int J Genomics. 2019 Oct 1;2019:1750291. doi: 10.1155/2019/1750291. eCollection 2019.

Abstract

, a malaria pathogen, has shown substantial resistance to treatment coupled with poor response to some vaccines thereby requiring urgent, holistic, and broad approach to prevent this endemic disease. Understanding the biology of the malaria parasite has been identified as a vital approach to overcome the threat of malaria. This study is aimed at identifying essential proteins unique to malaria parasites using a reconstructed genome-scale metabolic model (GEM) of the 3D7 strain of by filling gaps in the model with nineteen (19) metabolites and twenty-three (23) reactions obtained from the MetaCyc database. Twenty (20) currency metabolites were removed from the network because they have been identified to produce shortcuts that are biologically infeasible. The resulting modified GEM was a model using the -shortest path algorithm to identify possible alternative metabolic pathways in glycolysis and pentose phosphate pathways of . Heuristic function was introduced for the optimal performance of the algorithm. To validate the prediction, the essentiality of the reactions in the reconstructed network was evaluated using betweenness centrality measure, which was applied to every reaction within the pathways considered in this study. Thirty-two (32) essential reactions were predicted among which our method validated fourteen (14) enzymes already predicted in the literature. The enzymatic proteins that catalyze these essential reactions were checked for homology with the host genome, and two (2) showed insignificant similarity, making them possible drug targets. In conclusion, the application of the intelligent search technique to the metabolic network of predicts potential biologically relevant alternative pathways using graph theory-based approach.

摘要

疟原虫,一种疟疾病原体,已表现出对治疗的显著抗性以及对某些疫苗的不良反应,因此需要采取紧急、全面且广泛的方法来预防这种地方病。了解疟原虫的生物学特性已被确定为克服疟疾威胁的关键方法。本研究旨在通过用从MetaCyc数据库获得的19种代谢物和23种反应填补模型中的空白,利用重建的恶性疟原虫3D7株基因组规模代谢模型(GEM)来识别疟原虫特有的必需蛋白质。从网络中去除了20种通用代谢物,因为它们已被确定会产生生物学上不可行的捷径。所得的修改后的GEM是一个使用最短路径算法来识别恶性疟原虫糖酵解和磷酸戊糖途径中可能替代代谢途径的模型。为了算法的最佳性能引入了启发式函数。为了验证预测结果,使用介数中心性度量评估重建网络中反应的必要性,该度量应用于本研究中考虑的途径内的每个反应。预测了32个必需反应,其中我们的方法验证了文献中已预测的14种酶。检查催化这些必需反应的酶蛋白与宿主基因组的同源性,有两种显示出不显著的相似性,使其成为可能的药物靶点。总之,将智能搜索技术应用于恶性疟原虫的代谢网络,使用基于图论的方法预测潜在的生物学相关替代途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fafd/6791207/649361bf7686/IJG2019-1750291.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验