Suppr超能文献

基于酶变异的深度学习代谢通量:.

Metabolic Fluxes Using Deep Learning Based on Enzyme Variations: .

作者信息

Oulia Freddy, Charton Philippe, Lo-Thong-Viramoutou Ophélie, Acevedo-Rocha Carlos G, Liu Wei, Huynh Du, Damour Cédric, Wang Jingbo, Cadet Frederic

机构信息

BIGR, UMR_S1134 Inserm, University of Paris City, 75006 Paris, France.

Laboratory of Excellence GR-Ex, 75006 Paris, France.

出版信息

Int J Mol Sci. 2024 Dec 13;25(24):13390. doi: 10.3390/ijms252413390.

Abstract

Metabolic pathway modeling, essential for understanding organism metabolism, is pivotal in predicting genetic mutation effects, drug design, and biofuel development. Enhancing these modeling techniques is crucial for achieving greater prediction accuracy and reliability. However, the limited experimental data or the complexity of the pathway makes it challenging for researchers to predict phenotypes. Deep learning (DL) is known to perform better than other Machine Learning (ML) approaches if the right conditions are met (i.e., a large database and good choice of parameters). Here, we use a knowledge-based model to massively generate synthetic data and extend a small initial dataset of experimental values. The main objective is to assess if DL can perform at least as well as other ML approaches in flux prediction, using 68,950 instances. Two processing methods are used to generate DL models: cross-validation and repeated holdout evaluation. DL models predict the metabolic fluxes with high precision and slightly outperform the best-known ML approach (the Cubist model) with a lower RMSE (≤0.01) in both cases. They also outperform the PLS model (RMSE ≥ 30). This study is the first to use DL to predict the overall flux of a metabolic pathway only from variations of enzyme concentrations.

摘要

代谢途径建模对于理解生物体代谢至关重要,在预测基因突变效应、药物设计和生物燃料开发中起着关键作用。增强这些建模技术对于实现更高的预测准确性和可靠性至关重要。然而,有限的实验数据或途径的复杂性使得研究人员预测表型具有挑战性。如果满足正确的条件(即大型数据库和参数的良好选择),深度学习(DL)的表现优于其他机器学习(ML)方法。在这里,我们使用基于知识的模型大量生成合成数据并扩展一个小的初始实验值数据集。主要目标是使用68950个实例评估DL在通量预测中是否至少能与其他ML方法表现得一样好。使用两种处理方法生成DL模型:交叉验证和重复留出评估。在这两种情况下,DL模型都能高精度地预测代谢通量,并且在均方根误差(RMSE≤0.01)方面略优于最著名的ML方法(Cubist模型)。它们也优于PLS模型(RMSE≥30)。本研究首次使用DL仅根据酶浓度的变化来预测代谢途径的整体通量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37c0/11676880/fc12aab1286f/ijms-25-13390-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验