Ruiz Estelle, Talenton Vincent, Dubrana Marie-Pierre, Guesdon Gabrielle, Lluch-Senar Maria, Salin Franck, Sirand-Pugnet Pascal, Arfi Yonathan, Lartigue Carole
INRA , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France.
Univ. Bordeaux , UMR 1332 de Biologie du Fruit et Pathologie , F-33140 Villenave d'Ornon , France.
ACS Synth Biol. 2019 Nov 15;8(11):2547-2557. doi: 10.1021/acssynbio.9b00224. Epub 2019 Oct 30.
Over the past decade, a new strategy was developed to bypass the difficulties to genetically engineer some microbial species by transferring (or "cloning") their genome into another organism that is amenable to efficient genetic modifications and therefore acts as a living workbench. As such, the yeast has been used to clone and engineer genomes from viruses, bacteria, and algae. The cloning step requires the insertion of yeast genetic elements in the genome of interest, in order to drive its replication and maintenance as an artificial chromosome in the host cell. Current methods used to introduce these genetic elements are still unsatisfactory, due either to their random nature (transposon) or the requirement for unique restriction sites at specific positions (TAR cloning). Here we describe the CReasPy-cloning, a new method that combines both the ability of Cas9 to cleave DNA at a user-specified locus and the yeast's highly efficient homologous recombination to simultaneously clone and engineer a bacterial chromosome in yeast. Using the 0.816 Mbp genome of as a proof of concept, we demonstrate that our method can be used to introduce the yeast genetic element at any location in the bacterial chromosome while simultaneously deleting various genes or group of genes. We also show that CReasPy-cloning can be used to edit up to three independent genomic loci at the same time with an efficiency high enough to warrant the screening of a small (<50) number of clones, allowing for significantly shortened genome engineering cycle times.
在过去十年中,人们开发了一种新策略,以绕过对某些微生物物种进行基因工程改造时遇到的困难,即将它们的基因组转移(或“克隆”)到另一种易于进行高效基因改造的生物体中,该生物体因此充当一个活的工作台。 因此,酵母已被用于克隆和改造病毒、细菌和藻类的基因组。克隆步骤需要在目标基因组中插入酵母遗传元件,以便驱动其作为人工染色体在宿主细胞中复制和维持。目前用于引入这些遗传元件的方法仍然不尽人意,这要么是由于它们的随机性(转座子),要么是由于在特定位置需要独特的限制性位点(TAR克隆)。在这里,我们描述了CReasPy克隆,这是一种新方法,它结合了Cas9在用户指定位点切割DNA的能力和酵母高效的同源重组,以同时在酵母中克隆和改造细菌染色体。以[具体细菌名称]的0.816 Mbp基因组作为概念验证,我们证明我们的方法可用于在细菌染色体的任何位置引入酵母遗传元件,同时删除各种基因或基因群。我们还表明,CReasPy克隆可用于同时编辑多达三个独立的基因组位点,其效率足以保证筛选少量(<50个)克隆,从而显著缩短基因组工程周期时间。