Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France.
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
ACS Synth Biol. 2020 Oct 16;9(10):2737-2748. doi: 10.1021/acssynbio.0c00263. Epub 2020 Oct 5.
Genome engineering of microorganisms has become a standard in microbial biotechnologies. Several efficient tools are available for the genetic manipulation of model bacteria such as and , or the yeast . Difficulties arise when transferring these tools to nonmodel organisms. Synthetic biology strategies relying on genome transplantation (GT) aim at using yeast cells for engineering bacterial genomes cloned as artificial chromosomes. However, these strategies remain unsuccessful for many bacteria, including (MPN), a human pathogen infecting the respiratory tract that has been extensively studied as a model for systems biology of simple unicellular organisms. Here, we have designed a novel strategy for genome engineering based on the recombinase-assisted genomic engineering (RAGE) technology for editing the MPN genome. Using this strategy, we have introduced a 15 kbp fragment at a specific locus of the MPN genome and replaced 38 kbp from its genome by engineered versions modified either in yeast or in . A strain harboring a synthetic version of this fragment cleared of 13 nonessential genes could also be built and propagated . These strains were depleted of known virulence factors aiming at creating an avirulent chassis for SynBio applications. Such a chassis and technology are a step forward to build vaccines or deliver therapeutic compounds in the lungs to prevent or cure respiratory diseases in humans.
微生物的基因组工程已成为微生物生物技术的标准。有几种有效的工具可用于对模型细菌(如 和 ,或酵母 )进行遗传操作。当将这些工具转移到非模式生物时,就会出现困难。依赖于基因组移植 (GT) 的合成生物学策略旨在利用酵母细胞来工程化作为人工染色体克隆的细菌基因组。然而,对于许多细菌,包括 (MPN),这些策略仍然不成功,MPN 是一种感染呼吸道的人类病原体,作为简单单细胞生物系统生物学的模型,已被广泛研究。在这里,我们设计了一种基于重组酶辅助基因组工程 (RAGE) 技术的新型基因组工程策略,用于编辑 MPN 基因组。使用这种策略,我们在 MPN 基因组的特定基因座处引入了 15 kbp 片段,并通过在酵母或 中修饰的工程版本替换了其基因组中的 38 kbp。还可以构建并繁殖携带该片段的合成版本且清除了 13 个非必需基因的菌株。这些菌株耗尽了已知的毒力因子,旨在为 SynBio 应用创建无毒底盘。这样的底盘和技术是向前迈进的一步,可以在肺部中构建疫苗或输送治疗化合物,以预防或治疗人类的呼吸道疾病。