Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Phys Chem Chem Phys. 2019 Nov 13;21(44):24572-24583. doi: 10.1039/c9cp03687c.
In this work, poly(N,N'-dimethylaminoethylmethacrylate-co-N-isopropylacrylamide) copolymer films were polymerized on the surface of Au electrodes with a facile one-step method, and Au nanoclusters (AuNCs) and tetraphenylethene (TPE) were synchronously embedded in the films, designated as P(DMA-co-NIPA)/AuNCs/TPE. Ferrocene dicarboxylic acid (FDA), an electroactive probe in solution displayed inverse pH- and SO42--sensitive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) mediated by FDA in solution could substantially amplify the CV response difference between the on and off states. Moreover, the two fluorescence emission (FL) signals from the TPE constituent at 450 nm and AuNCs component at 660 nm in the films also demonstrated SO42-- and pH-sensitive behaviors. Based on the aforementioned results, a 4-input/9-output biomolecular logic circuit was constructed with pH, Na2SO4, FDA and NADH as the inputs, and the CV signals and the FL responses at 450 and 660 nm at different levels as the outputs. Additionally, some functional non-Boolean devices were elaborately designed on an identical platform, including a 1-to-2 decoder, a 2-to-1 encoder, a 1-to-2 demultiplexer and different types of keypad locks. This work combines copolymer films, bioelectrocatalysis, and fluorescence together so that more complicated biocomputing systems could be established. This work may pave a new way to develop advanced and sophisticated biocomputing logic circuits and functional devices in the future.
在这项工作中,通过简便的一步法在 Au 电极表面聚合聚(N,N'-二甲基氨基乙基甲基丙烯酸酯-co-N-异丙基丙烯酰胺)共聚物薄膜,并同步嵌入 Au 纳米团簇(AuNCs)和四苯乙烯(TPE),标记为 P(DMA-co-NIPA)/AuNCs/TPE。溶液中的电化学活性探针二羧酸基二茂铁(FDA)在薄膜电极上表现出反 pH 和 SO42--敏感的开-关循环伏安(CV)行为。溶液中 FDA 介导的烟酰胺腺嘌呤二核苷酸(NADH)的电催化氧化可以显著放大开态和关态之间的 CV 响应差异。此外,薄膜中 TPE 组成部分在 450nm 处和 AuNCs 组成部分在 660nm 处的两个荧光发射(FL)信号也表现出 SO42--和 pH 敏感行为。基于上述结果,构建了一个 4 输入/9 输出生物分子逻辑电路,以 pH、Na2SO4、FDA 和 NADH 作为输入,不同水平下的 CV 信号和在 450nm 和 660nm 处的 FL 响应作为输出。此外,在相同的平台上精心设计了一些功能非布尔设备,包括 1 到 2 解码器、2 到 1 编码器、1 到 2 多路复用器和不同类型的键盘锁。这项工作将共聚物薄膜、生物电化学和荧光结合在一起,使得更复杂的生物计算系统可以建立。这项工作可能为未来开发先进和复杂的生物计算逻辑电路和功能设备开辟新途径。