State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Road, 130012, Changchun, China.
School of Physics, Nankai University, 300071, Tianjin, China.
Nat Commun. 2019 Oct 29;10(1):4912. doi: 10.1038/s41467-019-12853-8.
Localized surface plasmon resonance (LSPR) offers a valuable opportunity to improve the efficiency of photocatalysts. However, plasmonic enhancement of photoconversion is still limited, as most of metal-semiconductor building blocks depend on LSPR contribution of isolated metal nanoparticles. In this contribution, the concept of collective excitation of embedded metal nanoparticles is demonstrated as an effective strategy to enhance the utilization of plasmonic energy. The contribution of Au-nanochain to the enhancement of photoconversion is 3.5 times increase in comparison with that of conventional isolated Au nanoparticles. Experimental characterization and theoretical simulation show that strongly coupled plasmonic nanostructure of Au-nanochain give rise to highly intensive electromagnetic field. The enhanced strength of electromagnetic field essentially boosts the formation rate of electron-hole pair in semiconductor, and ultimately improves photocatalytic hydrogen evolution activity of semiconductor photocatalysts. The concept of embedded coupled-metal nanostructure represents a promising strategy for the rational design of high-performance photocatalysts.
局域表面等离激元共振(LSPR)为提高光催化剂的效率提供了一个有价值的机会。然而,光致转换的等离子体增强仍然受到限制,因为大多数金属-半导体构建块依赖于孤立金属纳米粒子的 LSPR 贡献。在本研究中,嵌入金属纳米粒子的集体激发概念被证明是一种有效的策略,可以提高等离子体能量的利用率。与传统的孤立 Au 纳米粒子相比,Au 纳米链对光转化的增强贡献增加了 3.5 倍。实验表征和理论模拟表明,Au 纳米链的强耦合等离子体纳米结构产生了高强度的电磁场。电磁场的增强强度从本质上提高了半导体中电子-空穴对的形成速率,最终提高了半导体光催化剂的光催化析氢活性。嵌入式耦合金属纳米结构的概念代表了一种用于设计高性能光催化剂的很有前途的策略。