State Key Laboratory of Coal Mine Disaster Dynamics and Control, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
Nano Lett. 2023 Jun 14;23(11):5288-5296. doi: 10.1021/acs.nanolett.3c01287. Epub 2023 May 26.
Inspired by transformation optics, we propose a new concept for plasmonic photocatalysis by creating a novel hybrid nanostructure with a plasmonic singularity. Our geometry enables broad and strong spectral light harvesting at the active site of a nearby semiconductor where the chemical reaction occurs. A proof-of-concept nanostructure comprising CuZnSnS (CZTS) and Au-Au dimer (t-CZTS@Au-Au) is fabricated via a colloidal strategy combining templating and seeded growth. On the basis of numerical and experimental results of different related hybrid nanostructures, we show that both the sharpness of the singular feature and the relative position to the reactive site play a pivotal role in optimizing photocatalytic activity. Compared with bare CZTS, the hybrid nanostructure (t-CZTS@Au-Au) exhibits an enhancement of the photocatalytic hydrogen evolution rate by up to ∼9 times. The insights gained from this work might be beneficial for designing efficient composite plasmonic photocatalysts for diverse photocatalytic reactions.
受变换光学启发,我们通过创建具有等离子体奇点的新型混合纳米结构,提出了一种用于等离子体光催化的新概念。我们的几何形状使在附近半导体的活性位点处能够进行广泛而强烈的光谱光捕获,化学反应发生在该活性位点处。通过结合模板和种子生长的胶体策略,制造了包含 CuZnSnS (CZTS) 和 Au-Au 二聚体 (t-CZTS@Au-Au) 的概念验证纳米结构。基于不同相关混合纳米结构的数值和实验结果,我们表明奇异特征的锐度和与反应位点的相对位置在优化光催化活性方面起着关键作用。与裸 CZTS 相比,混合纳米结构 (t-CZTS@Au-Au) 的光催化析氢速率提高了约 9 倍。这项工作获得的见解可能有助于设计用于各种光催化反应的高效复合等离子体光催化剂。