Suppr超能文献

基于药物诱导基因表达特征和纵向系统性红斑狼疮分层的差异化治疗。

Differential Treatments Based on Drug-induced Gene Expression Signatures and Longitudinal Systemic Lupus Erythematosus Stratification.

机构信息

Centro de Genómica e Investigaciones Oncológicas Pfizer-Universidad de Granada-Junta de Andalucía (GENYO), Granada, Spain.

Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Sci Rep. 2019 Oct 29;9(1):15502. doi: 10.1038/s41598-019-51616-9.

Abstract

Systemic lupus erythematosus (SLE) is a heterogeneous disease with unpredictable patterns of activity. Patients with similar activity levels may have different prognosis and molecular abnormalities. In this study, we aimed to measure the main differences in drug-induced gene expression signatures across SLE patients and to evaluate the potential for clinical data to build a machine learning classifier able to predict the SLE subset for individual patients. SLE transcriptomic data from two cohorts were compared with drug-induced gene signatures from the CLUE database to compute a connectivity score that reflects the capability of a drug to revert the patient signatures. Patient stratification based on drug connectivity scores revealed robust clusters of SLE patients identical to the clusters previously obtained through longitudinal gene expression data, implying that differential treatment depends on the cluster to which patients belongs. The best drug candidates found, mTOR inhibitors or those reducing oxidative stress, showed stronger cluster specificity. We report that drug patterns for reverting disease gene expression follow the cell-specificity of the disease clusters. We used 2 cohorts to train and test a logistic regression model that we employed to classify patients from 3 independent cohorts into the SLE subsets and provide a clinically useful model to predict subset assignment and drug efficacy.

摘要

系统性红斑狼疮 (SLE) 是一种异质性疾病,其活动模式不可预测。具有相似活动水平的患者可能具有不同的预后和分子异常。在这项研究中,我们旨在测量 SLE 患者之间药物诱导基因表达特征的主要差异,并评估临床数据构建能够预测个体患者 SLE 亚组的机器学习分类器的潜力。将两个队列的 SLE 转录组数据与 CLUE 数据库中的药物诱导基因特征进行比较,以计算反映药物恢复患者特征能力的连通性得分。基于药物连通性得分的患者分层揭示了与通过纵向基因表达数据获得的聚类相同的 SLE 患者的稳健聚类,这意味着不同的治疗取决于患者所属的聚类。发现的最佳候选药物,mTOR 抑制剂或减少氧化应激的药物,显示出更强的聚类特异性。我们报告说,恢复疾病基因表达的药物模式遵循疾病聚类的细胞特异性。我们使用了两个队列来训练和测试逻辑回归模型,我们使用该模型将来自 3 个独立队列的患者分类为 SLE 亚组,并提供了一个临床有用的模型来预测亚组分配和药物疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验