Suppr超能文献

具有光谱降质和串扰的光子计数探测器的检测效率。

Detective efficiency of photon counting detectors with spectral degradation and crosstalk.

机构信息

Departments of Electrical Engineering and Radiology, Stanford University, Stanford, CA, 94305, USA.

Departments of Bioengineering and Radiology, Stanford University, Stanford, CA, 94305, USA.

出版信息

Med Phys. 2020 Jan;47(1):27-36. doi: 10.1002/mp.13889. Epub 2019 Nov 22.

Abstract

PURPOSE

Charge sharing and migration of scattered and fluorescence photons in an energy discriminating photon counting detector (PCD) degrade the detector's energy response and can cause a single incident photon to be registered as multiple events at different energies among neighboring pixels, leading to spatio-energetic correlation. Such a correlation in conventional linear, space-invariant imaging system can be usefully characterized by the frequency dependent detective quantum efficiency DQE(f). Defining and estimating DQE(f) for PCDs in a manner consistent with that of conventional detectors is complicated because the traditional definition of DQE(f) does not address spectral information.

METHODS

We introduce the concept of presampling spectroscopic detective quantum efficiency, DQE (f), and present an analysis of it for CdTe PCDs using a spatial domain method that starts from a previously described analytic computation of spatio-energetic crosstalk. DQE (f) is estimated as the squared signal-to-noise ratio of the amplitude of a small-signal sinusoidal modulation of the object (cortical bone) thickness at frequency f estimated using data from the detector under consideration compared that obtained from the photon distribution incident on the detector. DQE for material decomposition (spectral) and effective monoenergetic imaging tasks for different pixel pitch is studied based on the multipixel Cramér-Rao lower bound (CRLB) that accounts for inter pixel basis material correlation. Effective monoenergetic DQE is estimated from the CRLB of a linear weighted combination of basis materials, and its energy dependence is also studied.

RESULTS

Zero frequency DQE for the spectral task was ~18%, 25%, and 34% for 250 μm, 500 μm, and 1 mm detector pixels respectively. Inter pixel signal correlation results in positive noise correlation between same basis material estimates of neighboring pixels, resulting in least impact on DQE at the detector's Nyquist frequency. Effective monoenergetic DQE (0) at the optimal energy is relatively tolerant of spectral degradation (85-91% depending on pixel size), but is highly dependent on the selected effective energy, with maximum variation (in 250 μm pixels) of 17% to 85% for effective energy between 30 to 120 keV.

CONCLUSIONS

Our results show that spatio-energetic correlations degrade DQE (f) beyond what is lost by poor spectral response in a single detector element. The positive correlation between computed single basis material values in neighboring pixels results in the penalty to DQE (f) to be the least at the Nyquist frequency of the detector. It is desirable to reduce spectral degradation and crosstalk to minimize the impact on system performance. Larger pixels sizes have better spatio-energetic response due to lower charge sharing and escape of scatter and K-fluorescence photons, and therefore higher DQE (0). Effective monoenergetic DQE (0) at the optimal energy is much less affected by spectral degradation and crosstalk compared to DQE for spectral tasks.

摘要

目的

在能量分辨光子计数探测器(PCD)中,散射和荧光光子的电荷共享和迁移会降低探测器的能量响应,并且会导致单个入射光子在相邻像素中的不同能量处被记录为多个事件,从而产生空间能量相关性。在传统的线性、空间不变成像系统中,可以通过频率相关的探测量子效率 DQE(f)来很好地描述这种相关性。由于传统的 DQE(f)定义没有考虑光谱信息,因此以与传统探测器一致的方式定义和估计 PCD 中的 DQE(f)比较复杂。

方法

我们引入了预采样光谱探测量子效率 DQE(f)的概念,并使用基于空间域的方法对 CdTe PCD 进行了分析,该方法从先前描述的对空间能量串扰的解析计算开始。使用从正在考虑的探测器获得的数据,根据小信号正弦调制对象(皮质骨)厚度的幅度估计的频率 f 处的信号与噪声比来估计 DQE(f),与从探测器上入射的光子分布获得的信号与噪声比进行比较。基于多像素克拉美罗下限(CRLB)研究了不同像素间距的材料分解(光谱)和有效单能量成像任务的 DQE,该下限考虑了像素间的基础材料相关性。从基础材料的线性加权组合的 CRLB 中估计有效单能量 DQE,并且还研究了其能量依赖性。

结果

对于光谱任务,250μm、500μm 和 1mm 探测器像素的零频率 DQE 分别约为 18%、25%和 34%。像素间信号相关性导致相邻像素中相同基础材料估计值之间的正噪声相关性,从而对探测器奈奎斯特频率处的 DQE 影响最小。在最佳能量处的有效单能量 DQE(0)对光谱退化具有相对较高的容忍度(取决于像素大小,为 85%至 91%),但对有效能量的依赖性很高,对于有效能量在 30keV 至 120keV 之间,250μm 像素的最大变化为 17%至 85%。

结论

我们的结果表明,空间能量相关性会降低 DQE(f),超过单个探测器元件中光谱响应不良所导致的损失。在相邻像素中计算出的单个基础材料值之间的正相关性导致 DQE(f)的惩罚在探测器的奈奎斯特频率处最小。降低光谱退化和串扰以最小化对系统性能的影响是可取的。较大的像素尺寸由于散射和 K 荧光光子的电荷共享和逃逸而具有更好的空间能量响应,因此具有更高的 DQE(0)。与光谱任务的 DQE 相比,在最佳能量处的有效单能量 DQE(0)受光谱退化和串扰的影响要小得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验