Suppr超能文献

miRNAs 在调节肾上腺和性腺类固醇生成中的作用。

The role of miRNAs in regulating adrenal and gonadal steroidogenesis.

机构信息

Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA.

Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford University, Stanford, California, USA.

出版信息

J Mol Endocrinol. 2020 Jan;64(1):R21-R43. doi: 10.1530/JME-19-0105.

Abstract

miRNAs are endogenous noncoding single-stranded small RNAs of ~22 nucleotides in length that post-transcriptionally repress the expression of their various target genes. They contribute to the regulation of a variety of physiologic processes including embryonic development, differentiation and proliferation, apoptosis, metabolism, hemostasis and inflammation. In addition, aberrant miRNA expression is implicated in the pathogenesis of numerous diseases including cancer, hepatitis, cardiovascular diseases and metabolic diseases. Steroid hormones regulate virtually every aspect of metabolism, and acute and chronic steroid hormone biosynthesis is primarily regulated by tissue-specific trophic hormones involving transcriptional and translational events. In addition, it is becoming increasingly clear that steroidogenic pathways are also subject to post-transcriptional and post-translational regulations including processes such as phosphorylation/dephosphorylation, protein‒protein interactions and regulation by specific miRNAs, although the latter is in its infancy state. Here, we summarize the recent advances in miRNA-mediated regulation of steroidogenesis with emphasis on adrenal and gonadal steroidogenesis.

摘要

miRNAs 是一类内源性非编码的单链小分子 RNA,长度约为 22 个核苷酸,通过转录后抑制其各种靶基因的表达。它们参与调节多种生理过程,包括胚胎发育、分化和增殖、细胞凋亡、代谢、止血和炎症。此外,异常的 miRNA 表达与许多疾病的发病机制有关,包括癌症、肝炎、心血管疾病和代谢性疾病。甾体激素调节代谢的几乎所有方面,急性和慢性甾体激素生物合成主要受涉及转录和翻译事件的组织特异性营养激素调节。此外,越来越明显的是,甾体生成途径也受到转录后和翻译后调节的影响,包括磷酸化/去磷酸化、蛋白质-蛋白质相互作用以及特定 miRNA 的调节等过程,尽管后者还处于起步阶段。在这里,我们总结了 miRNA 介导的甾体生成调节的最新进展,重点介绍了肾上腺和性腺甾体生成。

相似文献

1
The role of miRNAs in regulating adrenal and gonadal steroidogenesis.
J Mol Endocrinol. 2020 Jan;64(1):R21-R43. doi: 10.1530/JME-19-0105.
2
MicroRNA regulation of adrenal glucocorticoid and androgen biosynthesis.
Vitam Horm. 2024;124:1-37. doi: 10.1016/bs.vh.2023.06.006. Epub 2023 Nov 24.
3
Basic concepts and recent developments in human steroid hormone biosynthesis.
Rev Endocr Metab Disord. 2007 Dec;8(4):289-300. doi: 10.1007/s11154-007-9052-2.
4
Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis.
Science. 1995 Mar 24;267(5205):1828-31. doi: 10.1126/science.7892608.
5
Hormonal regulation of microRNA expression in steroid producing cells of the ovary, testis and adrenal gland.
PLoS One. 2013 Oct 28;8(10):e78040. doi: 10.1371/journal.pone.0078040. eCollection 2013.
6
A brief history of adrenal research: steroidogenesis - the soul of the adrenal.
Mol Cell Endocrinol. 2013 May 22;371(1-2):5-14. doi: 10.1016/j.mce.2012.10.023. Epub 2012 Oct 30.
7
A cholesterol-centric outlook on steroidogenesis.
Vitam Horm. 2024;124:405-428. doi: 10.1016/bs.vh.2023.05.006. Epub 2023 Sep 12.
8
Equine fetal adrenal, gonadal and placental steroidogenesis.
Reproduction. 2017 Oct;154(4):445-454. doi: 10.1530/REP-17-0239.
10
The role of the StAR protein in steroidogenesis: challenges for the future.
J Endocrinol. 2000 Mar;164(3):247-53. doi: 10.1677/joe.0.1640247.

引用本文的文献

1
6
HIF1α controls steroidogenesis under acute hypoxic stress.
Cell Commun Signal. 2025 Feb 13;23(1):86. doi: 10.1186/s12964-025-02080-8.
8
Does the miR-105-1-Kisspeptin Axis Promote Ovarian Cell Functions?
Reprod Sci. 2024 Aug;31(8):2293-2308. doi: 10.1007/s43032-024-01554-3. Epub 2024 Apr 17.
9
Thromboxane A Modulates de novo Synthesis of Adrenal Corticosterone in Mice via p38/14-3-3γ/StAR Signaling.
Adv Sci (Weinh). 2024 May;11(18):e2307926. doi: 10.1002/advs.202307926. Epub 2024 Mar 9.
10
Intertwined regulators: hypoxia pathway proteins, microRNAs, and phosphodiesterases in the control of steroidogenesis.
Pflugers Arch. 2024 Sep;476(9):1383-1398. doi: 10.1007/s00424-024-02921-4. Epub 2024 Feb 15.

本文引用的文献

1
The role of MiRNA in polycystic ovary syndrome (PCOS).
Gene. 2019 Jul 20;706:91-96. doi: 10.1016/j.gene.2019.04.082. Epub 2019 May 1.
2
The Role of microRNAs in Ovarian Granulosa Cells in Health and Disease.
Front Endocrinol (Lausanne). 2019 Mar 21;10:174. doi: 10.3389/fendo.2019.00174. eCollection 2019.
3
The "backdoor pathway" of androgen synthesis in human male sexual development.
PLoS Biol. 2019 Apr 3;17(4):e3000198. doi: 10.1371/journal.pbio.3000198. eCollection 2019 Apr.
5
Alternative (backdoor) androgen production and masculinization in the human fetus.
PLoS Biol. 2019 Feb 14;17(2):e3000002. doi: 10.1371/journal.pbio.3000002. eCollection 2019 Feb.
6
Regulation of Aldosterone Signaling by MicroRNAs.
Vitam Horm. 2019;109:69-103. doi: 10.1016/bs.vh.2018.09.002. Epub 2018 Dec 1.
7
MicroRNA-150 promote apoptosis of ovine ovarian granulosa cells by targeting STAR gene.
Theriogenology. 2019 Mar 15;127:66-71. doi: 10.1016/j.theriogenology.2019.01.003. Epub 2019 Jan 12.
8
MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis.
Reprod Biol Endocrinol. 2019 Jan 10;17(1):9. doi: 10.1186/s12958-018-0450-y.
9
Triclosan Suppresses Testicular Steroidogenesis via the miR-6321/JNK/ Nur77 Cascade.
Cell Physiol Biochem. 2018;50(6):2029-2045. doi: 10.1159/000495049. Epub 2018 Nov 9.
10
miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1.
Gene. 2019 Jan 30;683:87-100. doi: 10.1016/j.gene.2018.10.006. Epub 2018 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验