Department of Engineering, Universidad Loyola Andalucía, 41704 Seville, Spain.
Sensors (Basel). 2019 Oct 30;19(21):4720. doi: 10.3390/s19214720.
This paper undertakes a systematic review (SR) on distributed estimation techniques applied to cyber-physical systems (CPS). Even though SRs are not the common way to survey a theme in the control community, they provide a rigorous, robust and objective formula that should not be always ignored. The presented SR incorporates and adapts the guidelines recommended in other fields (mainly biosciences and computer sciences) to the field of automation and control and presents a brief description of the different phases that constitute an SR. As a result, this review compares the different techniques found in the literature in terms of: The proposed estimator (Kalman filter, Luenberger observer, Bayesian filter, etc.), the particular application within CPS, the design of the estimators (decentralized vs centralized), the amount of data required for implementation or the inclusion of experiments/simulations in the studies. Particular attention is paid to those papers that present some results in applications that include humans, animals or biological systems.
本文对应用于网络物理系统(CPS)的分布式估计技术进行了系统综述(SR)。尽管 SR 并不是控制领域中常用的主题调查方法,但它们提供了一种严格、稳健和客观的方法,不应总是被忽视。本文提出的 SR 结合并调整了其他领域(主要是生物科学和计算机科学)推荐的指南,以适应自动化和控制领域,并简要描述了构成 SR 的不同阶段。因此,本综述比较了文献中不同技术的特点:提出的估计器(卡尔曼滤波器、Luenberger 观测器、贝叶斯滤波器等)、在 CPS 中的特定应用、估计器的设计(分散式与集中式)、实施所需的数据量或研究中包含的实验/模拟。特别关注那些在包含人类、动物或生物系统的应用中提出部分结果的论文。