College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China and School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
Nanoscale. 2020 Jan 7;12(1):93-102. doi: 10.1039/c9nr08118f. Epub 2019 Nov 1.
Plasmonic nanostructures possessing broadband intense field enhancement over a large area are highly desirable for nanophotonic and plasmonic device applications. In this study, 3D Ag hybrid nanoaggregates (3D-Ag-HNAs) are achieved via a highly efficient oblique angle gas-phase cluster beam deposition method. Not only can such structures produce a high density of plasmonic hot-spots to improve Raman sensitivity, but more importantly they generate kissing point-geometric singularities with a broadband optical response. We succeed in obtaining an experimental SERS enhancement factor beyond 4 × 10 in the visible range, providing an optimal sensing platform for different analytes. Combined with good uniformity, reproducibility and ease of fabrication, our 3D-Ag-HNA offers a candidate for new generations of SERS systems.
具有宽带强场增强的等离子体纳米结构对于纳米光子学和等离子体器件应用是非常理想的。在这项研究中,通过高效的斜角气相团束沉积方法实现了 3D Ag 杂化纳米聚集体(3D-Ag-HNAs)。这种结构不仅可以产生高密度的等离子体热点来提高拉曼灵敏度,而且更重要的是,它们产生具有宽带光响应的亲吻点几何奇点。我们成功地在可见光谱范围内获得了超过 4×10 的实验 SERS 增强因子,为不同的分析物提供了一个最佳的传感平台。结合良好的均匀性、可重复性和易于制造,我们的 3D-Ag-HNA 为新一代 SERS 系统提供了一个候选方案。